Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation
Xiaobin Luo, … , Baofeng Yang, Stanley Nattel
Xiaobin Luo, … , Baofeng Yang, Stanley Nattel
Published April 1, 2013
Citation Information: J Clin Invest. 2013;123(5):1939-1951. https://doi.org/10.1172/JCI62185.
View: Text | PDF
Research Article Cardiology

MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation

  • Text
  • PDF
Abstract

Atrial fibrillation (AF) is a highly prevalent arrhythmia with pronounced morbidity and mortality. Inward-rectifier K+ current (IK1) is believed to be an important regulator of reentrant-spiral dynamics and a major component of AF-related electrical remodeling. MicroRNA-26 (miR-26) is predicted to target the gene encoding KIR2.1, KCNJ2. We found that miR-26 was downregulated in atrial samples from AF animals and patients and this downregulation was accompanied by upregulation of IK1/KIR2.1 protein. miR-26 overexpression suppressed expression of KCNJ2/KIR2.1. In contrast, miR-26 knockdown, inhibition, or binding-site mutation enhanced KCNJ2/KIR2.1 expression, establishing KCNJ2 as a miR-26 target. Knockdown of endogenous miR-26 promoted AF in mice, whereas adenovirus-mediated expression of miR-26 reduced AF vulnerability. Kcnj2-specific miR-masks eliminated miR-26–mediated reductions in Kcnj2, abolishing miR-26’s protective effects, while coinjection of a Kcnj2-specific miR-mimic prevented miR-26 knockdown-associated AF in mice. Nuclear factor of activated T cells (NFAT), a known actor in AF-associated remodeling, was found to negatively regulate miR-26 transcription. Our results demonstrate that miR-26 controls the expression of KCNJ2 and suggest that this downregulation may promote AF.

Authors

Xiaobin Luo, Zhenwei Pan, Hongli Shan, Jiening Xiao, Xuelin Sun, Ning Wang, Huixian Lin, Ling Xiao, Ange Maguy, Xiao-Yan Qi, Yue Li, Xu Gao, Deli Dong, Yong Zhang, Yunlong Bai, Jing Ai, Lihua Sun, Hang Lu, Xiao-Yan Luo, Zhiguo Wang, Yanjie Lu, Baofeng Yang, Stanley Nattel

×

Figure 3

Regulation of AF vulnerability by miR-26.

Options: View larger image (or click on image) Download as PowerPoint
Regulation of AF vulnerability by miR-26.
(A) Effects of miR-26 and its ...
(A) Effects of miR-26 and its antisense on AF in mice. Upper panels: representative atrial electrogram recordings. WT, control mice receiving vehicle injections; adv–miR-free, adenovirus vector without miR-26; MM LNA–anti–miR-26a, mismatched LNA–anti–miR-26a as negative control constructs. Burst pacing is highlighted by solid underlines, whereas dashed underlines indicate AF. Lower panels: percentage of animals with successful AF induction (left: results are shown as n/N, where n = number inducible into AF/total of N mice) and AF duration in animals with successful AF induction (right). *P < 0.05, ***P < 0.001 vs. WT; ϕϕϕP < 0.001 vs. LNA–anti–miR-26a. Note: here and in Figure 4, related data sets for AF incidence and AF duration are shown separately for clarity in display. However, statistical comparisons were performed between all animals with interventions simultaneously (see Supplemental Figure 6 for all comparisons), with the statistical comparisons here reflecting the results of simultaneous comparisons of all data in Supplemental Figure 6. (B) IK1 in atrial myocytes isolated from mice treated with various constructs. Left panels: IK1 recordings. Right panel: IK1 density-voltage relationships. Results for adv–miR-26a and LNA–anti–miR-26a are shown with solid lines and the symbols defined on the figure; results for their controls (adv-miR free and MM LNA–anti–miR-26a) are shown with dashed lines. *P < 0.05 vs. WT; n = 12 cells/group. (C) qPCR verification of atrial miR-26 expression changes resulting from various constructs (note: anti–miR-26a is complementary to both miR-26a and miR-26b). ***P < 0.001 vs. WT; n = 8 mice/group. Values are mean ± SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts