Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation
Aritro Sen, … , Randall Rossi, Stephen R. Hammes
Aritro Sen, … , Randall Rossi, Stephen R. Hammes
Published June 11, 2012
Citation Information: J Clin Invest. 2012;122(7):2469-2481. https://doi.org/10.1172/JCI62044.
View: Text | PDF
Research Article Oncology

Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation

  • Text
  • PDF
Abstract

In prostate cancer, the signals that drive cell proliferation change as tumors progress from castration-sensitive (androgen-dominant) to castration-resistant states. While the mechanisms underlying this change remain uncertain, characterization of common signaling components that regulate both stages of prostate cancer proliferation is important for developing effective treatment strategies. Here, we demonstrate that paxillin, a known cytoplasmic adaptor protein, regulates both androgen- and EGF-induced nuclear signaling. We show that androgen and EGF promoted MAPK-dependent phosphorylation of paxillin, resulting in nuclear translocation of paxillin. We found nuclear paxillin could then associate with androgen-stimulated androgen receptor (AR). This complex bound AR-sensitive promoters, retaining AR within the nucleus and regulating AR-mediated transcription. Nuclear paxillin also complexed with ERK and ELK1, mediating c-FOS and cyclin D1 expression; this was followed by proliferation. Thus, paxillin is a liaison between extranuclear MAPK signaling and nuclear transcription in response to androgens and growth factors, making it a potential regulator of both castration-sensitive and castration-resistant prostate cancer. Accordingly, paxillin was required for normal growth of human prostate cancer cell xenografts, and its expression was elevated in human prostate cancer tissue microarrays. Paxillin is therefore a potential biomarker for prostate cancer proliferation and a possible therapeutic target for prostate cancer treatment.

Authors

Aritro Sen, Ismary De Castro, Donald B. DeFranco, Fang-Ming Deng, Jonathan Melamed, Payel Kapur, Ganesh V. Raj, Randall Rossi, Stephen R. Hammes

×

Figure 5

PXN modulates ERK-mediated transcription independent of androgens.

Options: View larger image (or click on image) Download as PowerPoint
PXN modulates ERK-mediated transcription independent of androgens.
(A) P...
(A) PXN is required for EGF-induced cyclin D1 promoter activity. Nsp/PXN-specific siRNA-treated PC3 cells were transiently transfected with cyclin D1 promoter-luciferase plus cytomegalovirus–β-gal plasmid, followed by EGF stimulation (20 ng/ml; 24 hours). PXN-knockdown cells were transfected with plasmids expressing WT PXN or PXN lacking the MAPK-targeted serines (S→A). Cyclin D1 promoter-luciferase activity was normalized to β-gal expression and data represented as fold increase with respect to medium (mean ± SEM, n = 3). *P ≤ 0.001. (B) Nuclear localization of ERK is independent of PS-PXN. Immunofluorescence of ERK (red), PXN (green), p-ERK (green), or PS-PXN (green) in PC3 cells treated with Nsp siRNA or PXN siRNA, followed by medium or EGF (20 ng/ml; 30 minutes) stimulation. PXN-knockdown cells were transfected with plasmids expressing WT PXN or PXN lacking the MAPK-targeted serine (S→A). Adjacent Hoechst staining represents the nucleus (n = 5 experiments, all with identical results). Original magnification, ×40.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts