Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
PKCε phosphorylation of the sodium channel NaV1.8 increases channel function and produces mechanical hyperalgesia in mice
Dai-Fei Wu, Dave Chandra, Thomas McMahon, Dan Wang, Jahan Dadgar, Viktor N. Kharazia, Ying-Jian Liang, Stephen G. Waxman, Sulayman D. Dib-Hajj, Robert O. Messing
Dai-Fei Wu, Dave Chandra, Thomas McMahon, Dan Wang, Jahan Dadgar, Viktor N. Kharazia, Ying-Jian Liang, Stephen G. Waxman, Sulayman D. Dib-Hajj, Robert O. Messing
View: Text | PDF
Research Article Neuroscience

PKCε phosphorylation of the sodium channel NaV1.8 increases channel function and produces mechanical hyperalgesia in mice

  • Text
  • PDF
Abstract

Mechanical hyperalgesia is a common and potentially disabling complication of many inflammatory and neuropathic conditions. Activation of the enzyme PKCε in primary afferent nociceptors is a major mechanism that underlies mechanical hyperalgesia, but the PKCε substrates involved downstream are not known. Here, we report that in a proteomic screen we identified the NaV1.8 sodium channel, which is selectively expressed in nociceptors, as a PKCε substrate. PKCε-mediated phosphorylation increased NaV1.8 currents, lowered the threshold voltage for activation, and produced a depolarizing shift in inactivation in wild-type — but not in PKCε-null — sensory neurons. PKCε phosphorylated NaV1.8 at S1452, and alanine substitution at this site blocked PKCε modulation of channel properties. Moreover, a specific PKCε activator peptide, ψεRACK, produced mechanical hyperalgesia in wild-type mice but not in Scn10a–/– mice, which lack NaV1.8 channels. These studies demonstrate that NaV1.8 is an important, direct substrate of PKCε that mediates PKCε-dependent mechanical hyperalgesia.

Authors

Dai-Fei Wu, Dave Chandra, Thomas McMahon, Dan Wang, Jahan Dadgar, Viktor N. Kharazia, Ying-Jian Liang, Stephen G. Waxman, Sulayman D. Dib-Hajj, Robert O. Messing

×

Figure 3

PKCε phosphorylates the third intracellular loop of Nav1.8.

Options: View larger image (or click on image) Download as PowerPoint
PKCε phosphorylates the third intracellular loop of Nav1.8.
   
(A) Sche...
(A) Schematic diagram illustrating the structural topology common to all eukaryotic sodium channels. (B) Intracellular domains of NaV1.8 were expressed in bacteria as 6xHis-tagged fusion proteins, and their expression was confirmed by Western blot analysis (left) with an anti-6xHis antibody (N terminus [N], ~24 kDa; L1, ~38 kDa; L2, ~39 kDa; L3, ~11 kDa; C terminus [C], ~35 kDa). Fusion proteins were used in a PKCε assay to determine whether any were PKCε substrates (right). An autoradiogram illustrates that the L3 loop (~11 kDa) is a likely PKCε substrate. Similar amounts of each fusion protein were used in Western blots (left) and kinase assays (right).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts