Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Suppressing T cell motility induced by anti–CTLA-4 monotherapy improves antitumor effects
Maria Grazia Ruocco, Karsten A. Pilones, Noriko Kawashima, Michael Cammer, Julie Huang, James S. Babb, Mengling Liu, Silvia C. Formenti, Michael L. Dustin, Sandra Demaria
Maria Grazia Ruocco, Karsten A. Pilones, Noriko Kawashima, Michael Cammer, Julie Huang, James S. Babb, Mengling Liu, Silvia C. Formenti, Michael L. Dustin, Sandra Demaria
View: Text | PDF
Research Article Oncology

Suppressing T cell motility induced by anti–CTLA-4 monotherapy improves antitumor effects

  • Text
  • PDF
Abstract

A promising strategy for cancer immunotherapy is to disrupt key pathways regulating immune tolerance, such as cytotoxic T lymphocyte–associated protein 4 (CTLA-4). However, the determinants of response to anti–CTLA-4 mAb treatment remain incompletely understood. In murine models, anti–CTLA-4 mAbs alone fail to induce effective immune responses to poorly immunogenic tumors but are successful when combined with additional interventions, including local ionizing radiation (IR) therapy. We employed an established model based on control of a mouse carcinoma cell line to study endogenous tumor-infiltrating CD8+ T lymphocytes (TILs) following treatment with the anti–CTLA-4 mAb 9H10. Alone, 9H10 monotherapy reversed the arrest of TILs with carcinoma cells in vivo. In contrast, the combination of 9H10 and IR restored MHC class I–dependent arrest. After implantation, the carcinoma cells had reduced expression of retinoic acid early inducible–1 (RAE-1), a ligand for natural killer cell group 2D (NKG2D) receptor. We found that RAE-1 expression was induced by IR in vivo and that anti-NKG2D mAb blocked the TIL arrest induced by IR/9H10 combination therapy. These results demonstrate that anti–CTLA-4 mAb therapy induces motility of TIL and that NKG2D ligation offsets this effect to enhance TILs arrest and antitumor activity.

Authors

Maria Grazia Ruocco, Karsten A. Pilones, Noriko Kawashima, Michael Cammer, Julie Huang, James S. Babb, Mengling Liu, Silvia C. Formenti, Michael L. Dustin, Sandra Demaria

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (730.94 KB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts