Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome
Thorfinn T. Riday, … , Benjamin D. Philpot, C.J. Malanga
Thorfinn T. Riday, … , Benjamin D. Philpot, C.J. Malanga
Published November 12, 2012
Citation Information: J Clin Invest. 2012;122(12):4544-4554. https://doi.org/10.1172/JCI61888.
View: Text | PDF
Research Article Neuroscience

Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome

  • Text
  • PDF
Abstract

Angelman syndrome (AS) is a neurodevelopmental disorder caused by maternal deletions or mutations of the ubiquitin ligase E3A (UBE3A) allele and characterized by minimal verbal communication, seizures, and disorders of voluntary movement. Previous studies have suggested that abnormal dopamine neurotransmission may underlie some of these deficits, but no effective treatment currently exists for the core features of AS. A clinical trial of levodopa (l-DOPA) in AS is ongoing, although the underlying rationale for this treatment strategy has not yet been thoroughly examined in preclinical models. We found that AS model mice lacking maternal Ube3a (Ube3am–/p+ mice) exhibit behavioral deficits that correlated with abnormal dopamine signaling. These deficits were not due to loss of dopaminergic neurons or impaired dopamine synthesis. Unexpectedly, Ube3am–/p+ mice exhibited increased dopamine release in the mesolimbic pathway while also exhibiting a decrease in dopamine release in the nigrostriatal pathway, as measured with fast-scan cyclic voltammetry. These findings demonstrate the complex effects of UBE3A loss on dopamine signaling in subcortical motor pathways that may inform ongoing clinical trials of l-DOPA therapy in patients with AS.

Authors

Thorfinn T. Riday, Elyse C. Dankoski, Michael C. Krouse, Eric W. Fish, Paul L. Walsh, Ji Eun Han, Clyde W. Hodge, R. Mark Wightman, Benjamin D. Philpot, C.J. Malanga

×

Figure 1

Ube3am–/p+ mice are more sensitive to BSR but less sensitive to dopaminergic potentiation of BSR.

Options: View larger image (or click on image) Download as PowerPoint

Ube3am–/p+ mice are more sensitive to BSR but less sensitive to dopamin...
(A) Representative ICSS rate-frequency curves in a WT mouse. Injection (i.p.) of the DAT antagonist GBR 12909 dose-dependently increases responding for rewarding electrical current at lower stimulus frequencies. (B) Rate-frequency curves expressed as charge (Q) delivery at each frequency (Hz) from Ube3am–/p+ mice are shifted to the left compared with those of WT littermates. (C) Ube3am–/p+ mice require significantly less (***P < 0.001) charge to evoke the same degree of responding as WT mice at reward threshold frequencies (EF50). (D) The maximum rate of operant responding for rewarding brain stimulation is comparable between genotypes (P > 0.05). (E) Ube3am–/p+ mice maintain a lower reward threshold over time (16–30 minutes, ***P < 0.001; 31–45 minutes, ***P < 0.001; 46–60 minutes, *P = 0.026). (F) WT mice exhibit greater potentiation of rewarding brain stimulation expressed as lower reward thresholds than Ube3am–/p+ mice following 10.0 mg/kg (**P = 0.002) and 17.0 mg/kg (***P < 0.001) GBR 12909 (i.p.). Error bars indicate ± SEM in B, E, and F and the median and interquartile ranges in C and D.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts