Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
RNA-binding protein PCBP2 modulates glioma growth by regulating FHL3
Wei Han, … , Boqin Qiang, Xiaozhong Peng
Wei Han, … , Boqin Qiang, Xiaozhong Peng
Published April 15, 2013
Citation Information: J Clin Invest. 2013;123(5):2103-2118. https://doi.org/10.1172/JCI61820.
View: Text | PDF
Research Article Oncology

RNA-binding protein PCBP2 modulates glioma growth by regulating FHL3

  • Text
  • PDF
Abstract

PCBP2 is a member of the poly(C)-binding protein (PCBP) family, which plays an important role in posttranscriptional and translational regulation by interacting with single-stranded poly(C) motifs in target mRNAs. Several PCBP family members have been reported to be involved in human malignancies. Here, we show that PCBP2 is upregulated in human glioma tissues and cell lines. Knockdown of PCBP2 inhibited glioma growth in vitro and in vivo through inhibition of cell-cycle progression and induction of caspase-3–mediated apoptosis. Thirty-five mRNAs were identified as putative PCBP2 targets/interactors using RIP-ChIP protein-RNA interaction arrays in a human glioma cell line, T98G. Four-and-a-half LIM domain 3 (FHL3) mRNA was downregulated in human gliomas and was identified as a PCBP2 target. Knockdown of PCBP2 enhanced the expression of FHL3 by stabilizing its mRNA. Overexpression of FHL3 attenuated cell growth and induced apoptosis. This study establishes a link between PCBP2 and FHL3 proteins and identifies a new pathway for regulating glioma progression.

Authors

Wei Han, Zhongshuai Xin, Zhiqiang Zhao, Wen Bao, Xihua Lin, Bin Yin, Jizong Zhao, Jiangang Yuan, Boqin Qiang, Xiaozhong Peng

×

Figure 8

Overexpression of FHL3 inhibits glioma growth in vitro and in vivo.

Options: View larger image (or click on image) Download as PowerPoint
Overexpression of FHL3 inhibits glioma growth in vitro and in vivo.
(A) ...
(A) Western blot showing overexpression of Flag-FHL3 plasmid in T98G cells using anti-Flag or anti-FHL3 antibody. (B) MTT assay of T98G cells after transfection with the empty vector (—) or flag-FHL3 plasmid. (C) Approximately 48 hours after transfection, T98G cells were analyzed by flow cytometry. The proportions of cells in the G1, G2, and S phases are presented in the right histogram. (D and E) Representative Western blot showing P27, P21, and P16 protein levels (D) and expression levels of differentially phosphorylated pRb (E) in FHL3-overexpressing T98G cells. (F) Nuclear TUNEL staining for apoptotic T98G cells approximately 48 hours after transfection. The percentage of TUNEL-positive cells was calculated (n = 5) and plotted in the histogram. (G) Representative Western blot showing (cleaved) caspase-3 and its substrate (cleaved) PARP in FHL3-overexpressing T98G cells. (H) Anchorage-independent growth of U87MG and U251 cell lines after infection with the adenovirus vector or adenovirus FHL3 as evaluated by the soft agar assay. Scale bars: 50 μm. The number of colonies in each field was scored and the results are expressed as the means ± SD (n = 5; *P < 0.05 by a 2-tailed Student’s t test). (I) Vector U87MG and FHL3-U87MG stable transfectants (5 × 105) were each injected intracranially into 6 nude mice and then imaged after 6 days and 22 days. Tumor sizes were quantified by in vivo bioluminescence imaging. The graph illustrates the distribution of tumor growth factor (22nd day photon flux values versus sixth day photon flux value) between the 2 groups.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts