Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages
Maliheh Nazari-Jahantigh, … , Christian Weber, Andreas Schober
Maliheh Nazari-Jahantigh, … , Christian Weber, Andreas Schober
Published November 1, 2012; First published October 8, 2012
Citation Information: J Clin Invest. 2012;122(11):4190-4202. https://doi.org/10.1172/JCI61716.
View: Text | PDF
Categories: Research Article Cardiology

MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages

  • Text
  • PDF
Abstract

Macrophages in atherosclerotic plaques drive inflammatory responses, degrade lipoproteins, and phagocytose dead cells. MicroRNAs (miRs) control the differentiation and activity of macrophages by regulating the signaling of key transcription factors. However, the functional role of macrophage-related miRs in the immune response during atherogenesis is unknown. Here, we report that miR-155 is specifically expressed in atherosclerotic plaques and proinflammatory macrophages, where it was induced by treatment with mildly oxidized LDL (moxLDL) and IFN-γ. Leukocyte-specific Mir155 deficiency reduced plaque size and number of lesional macrophages after partial carotid ligation in atherosclerotic (Apoe–/–) mice. In macrophages stimulated with moxLDL/IFN-γ in vitro, and in lesional macrophages, loss of Mir155 reduced the expression of the chemokine CCL2, which promotes the recruitment of monocytes to atherosclerotic plaques. Additionally, we found that miR-155 directly repressed expression of BCL6, a transcription factor that attenuates proinflammatory NF-κB signaling. Silencing of Bcl6 in mice harboring Mir155–/– macrophages enhanced plaque formation and CCL2 expression. Taken together, these data demonstrated that miR-155 plays a key role in atherogenic programming of macrophages to sustain and enhance vascular inflammation.

Authors

Maliheh Nazari-Jahantigh, Yuanyuan Wei, Heidi Noels, Shamima Akhtar, Zhe Zhou, Rory R. Koenen, Kathrin Heyll, Felix Gremse, Fabian Kiessling, Jochen Grommes, Christian Weber, Andreas Schober

×

Figure 9

Expression of lesional BCL6 is miR-155 dependent.

Options: View larger image (or click on image) Download as PowerPoint
Expression of lesional BCL6 is miR-155 dependent.
(A) Combined immunosta...
(A) Combined immunostaining for Bcl6 (red) and MAC2 (green) in atherosclerotic lesions of carotid arteries after partial ligation in Mir155+/+Apoe–/– mice harboring Mir155+/+Apoe–/– or Mir155–/–Apoe–/– BM and in Mir155–/–Apoe–/– mice harboring Mir155+/+Apoe–/– BM. Representative images are shown. Nuclei were counterstained with DAPI (blue). Arrows denote BCL6-expressing macrophages. Scale bars: 50 μm. (B) BCL6+ macrophages in sections of carotid lesions immunostained for BCL6 and MAC2 (n = 6–8 per group). (C) Bcl6 mRNA expression in lesions of carotid arteries 6 weeks after partial ligation in Mir155+/+Apoe–/– mice harboring Mir155+/+Apoe–/– or Mir155–/–Apoe–/– BM, determined by quantitative RT-PCR (n = 4 per group). *P < 0.05. Data are mean ± SEM.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts