Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning
Kim-Chew Lim, Tomonori Hosoya, William Brandt, Chia-Jui Ku, Sakie Hosoya-Ohmura, Sally A. Camper, Masayuki Yamamoto, James Douglas Engel
Kim-Chew Lim, Tomonori Hosoya, William Brandt, Chia-Jui Ku, Sakie Hosoya-Ohmura, Sally A. Camper, Masayuki Yamamoto, James Douglas Engel
View: Text | PDF
Research Article

Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning

  • Text
  • PDF
Abstract

The transcription factor GATA-2 plays vital roles in quite diverse developmental programs, including hematopoietic stem cell (HSC) survival and proliferation. We previously identified a vascular endothelial (VE) enhancer that regulates GATA-2 activity in pan-endothelial cells. To more thoroughly define the in vivo regulatory properties of this enhancer, we generated a tamoxifen-inducible Cre transgenic mouse line using the Gata2 VE enhancer (Gata2 VECre) and utilized it to temporally direct tissue-specific conditional loss of Gata2. Here, we report that Gata2 VECre–mediated loss of GATA-2 led to anemia, hemorrhage, and eventual death in edematous embryos. We further determined that the etiology of anemia in conditional Gata2 mutant embryos involved HSC loss in the fetal liver, as demonstrated by in vitro colony-forming and immunophenotypic as well as in vivo long-term competitive repopulation experiments. We further documented that the edema and hemorrhage in conditional Gata2 mutant embryos were due to defective lymphatic development. Thus, we unexpectedly discovered that in addition to its contribution to endothelial cell development, the VE enhancer also regulates GATA-2 expression in definitive fetal liver and adult BM HSCs, and that GATA-2 function is required for proper lymphatic vascular development during embryogenesis.

Authors

Kim-Chew Lim, Tomonori Hosoya, William Brandt, Chia-Jui Ku, Sakie Hosoya-Ohmura, Sally A. Camper, Masayuki Yamamoto, James Douglas Engel

×

Figure 7

mCh expression is restricted predominantly to the LSK fraction in adult BM.

Options: View larger image (or click on image) Download as PowerPoint
mCh expression is restricted predominantly to the LSK fraction in adult ...
Cells were isolated from BM, spleen, and thymus of wild-type adult mice without TgVE (n = 2; gray bars) or hemizygous for TgVE (n = 4; black bars) and then stained with various antibodies directed against developmental cell surface antigens prior to flow cytometric analyses. The percentages of mCh-positive cells within the immature (LSK and lin–Sca-1–c-Kithi) and committed erythroid, myeloid, B lymphoid, or T lymphoid cell compartments are summarized. The latter 4 committed lineages were characterized using pairs of antibodies (CD71 and TER-119, Mac1 and Gr-1, B220 and CD19, CD4 and CD8), respectively. Most conspicuously, mCh is expressed at 30- to 1,000-fold lower abundance in all mature hematopoietic lineages, but is robustly expressed exclusively in adult BM LSK cells.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts