Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning
Kim-Chew Lim, … , Masayuki Yamamoto, James Douglas Engel
Kim-Chew Lim, … , Masayuki Yamamoto, James Douglas Engel
Published September 10, 2012
Citation Information: J Clin Invest. 2012;122(10):3705-3717. https://doi.org/10.1172/JCI61619.
View: Text | PDF
Research Article

Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning

  • Text
  • PDF
Abstract

The transcription factor GATA-2 plays vital roles in quite diverse developmental programs, including hematopoietic stem cell (HSC) survival and proliferation. We previously identified a vascular endothelial (VE) enhancer that regulates GATA-2 activity in pan-endothelial cells. To more thoroughly define the in vivo regulatory properties of this enhancer, we generated a tamoxifen-inducible Cre transgenic mouse line using the Gata2 VE enhancer (Gata2 VECre) and utilized it to temporally direct tissue-specific conditional loss of Gata2. Here, we report that Gata2 VECre–mediated loss of GATA-2 led to anemia, hemorrhage, and eventual death in edematous embryos. We further determined that the etiology of anemia in conditional Gata2 mutant embryos involved HSC loss in the fetal liver, as demonstrated by in vitro colony-forming and immunophenotypic as well as in vivo long-term competitive repopulation experiments. We further documented that the edema and hemorrhage in conditional Gata2 mutant embryos were due to defective lymphatic development. Thus, we unexpectedly discovered that in addition to its contribution to endothelial cell development, the VE enhancer also regulates GATA-2 expression in definitive fetal liver and adult BM HSCs, and that GATA-2 function is required for proper lymphatic vascular development during embryogenesis.

Authors

Kim-Chew Lim, Tomonori Hosoya, William Brandt, Chia-Jui Ku, Sakie Hosoya-Ohmura, Sally A. Camper, Masayuki Yamamoto, James Douglas Engel

×

Figure 5

Severely attenuated HSC recovery from Tx-treated TgVE:Gata2–/fl adult BM.

Options: View larger image (or click on image) Download as PowerPoint
Severely attenuated HSC recovery from Tx-treated TgVE:Gata2–/fl adult BM...
(A) Adult mice (8–12 weeks of age) were gavaged with Tx (5 mg/d) or sunflower oil for 5 consecutive days. BM cells were isolated 48 hours after the final Tx administration and then stained with various antibodies directed against cell surface antigens prior to analyses. Representative contour plots for the LSKS (LSK Slam; LSKCD150+CD48–) fractions in Tx-treated control (2 TgVE:Gata2+/fl and 1 TgVE:Gata2+/–) mice and in 3 Tx-treated TgVE:Gata2–/fl compound heterozygous adult mice are shown. The percentage of LSKS cells in each gated area (boxed) is shown. (B) Distribution of highly purified HSCs isolated from Tx-treated (white) or mock-treated (black) control or test mice (2 tibias plus 2 femurs). Gata2+/fl and Gata2–/fl adult mice without or with TgVE were gavaged with Tx (5 mg/d) or sunflower oil for 5 consecutive days. The 4 groups of mice are designated as follows: Gata2+/fl, +/fl (n = 2); TgVE:Gata2+/fl, Tg:+/fl (n = 8); Gata2–/fl, –/fl (n = 3); and TgVE:Gata2–/fl, Tg:–/fl (n = 10). Data were compiled from 3 independent experiments. The ordinate axis is on a log scale; the horizontal bars represent the mean number of LSKS cells in Tx-treated mice of each genotype. Statistical significance was determined by Student’s t test. (C) Absolute number of adult BM LSKS cells in each mouse (2 tibias plus 2 femurs) expressing mCh (ordinate axis is log scale). The number of mCh-expressing cells in the TgVE:Gata2+/fl versus TgVE:Gata2–/fl fractions differs by 2–3 orders of magnitude. The horizontal bars represent the mean number of mCh-positive LSKS cells in Tx-treated mice of each genotype. Statistical significance was determined by Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts