Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal
Margaret G. Distler, Leigh D. Plant, Greta Sokoloff, Andrew J. Hawk, Ivy Aneas, Gerald E. Wuenschell, John Termini, Stephen C. Meredith, Marcelo A. Nobrega, Abraham A. Palmer
Margaret G. Distler, Leigh D. Plant, Greta Sokoloff, Andrew J. Hawk, Ivy Aneas, Gerald E. Wuenschell, John Termini, Stephen C. Meredith, Marcelo A. Nobrega, Abraham A. Palmer
View: Text | PDF
Research Article Neuroscience

Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal

  • Text
  • PDF
Abstract

Glyoxalase 1 (Glo1) expression has previously been associated with anxiety in mice; however, its role in anxiety is controversial, and the underlying mechanism is unknown. Here, we demonstrate that GLO1 increases anxiety by reducing levels of methylglyoxal (MG), a GABAA receptor agonist. Mice overexpressing Glo1 on a Tg bacterial artificial chromosome displayed increased anxiety-like behavior and reduced brain MG concentrations. Treatment with low doses of MG reduced anxiety-like behavior, while higher doses caused locomotor depression, ataxia, and hypothermia, which are characteristic effects of GABAA receptor activation. Consistent with these data, we found that physiological concentrations of MG selectively activated GABAA receptors in primary neurons. These data indicate that GLO1 increases anxiety by reducing levels of MG, thereby decreasing GABAA receptor activation. More broadly, our findings potentially link metabolic state, neuronal inhibitory tone, and behavior. Finally, we demonstrated that pharmacological inhibition of GLO1 reduced anxiety, suggesting that GLO1 is a possible target for the treatment of anxiety disorders.

Authors

Margaret G. Distler, Leigh D. Plant, Greta Sokoloff, Andrew J. Hawk, Ivy Aneas, Gerald E. Wuenschell, John Termini, Stephen C. Meredith, Marcelo A. Nobrega, Abraham A. Palmer

×

Figure 7

Pharmacological inhibition of GLO1 reduces anxiety-like behavior.

Options: View larger image (or click on image) Download as PowerPoint
Pharmacological inhibition of GLO1 reduces anxiety-like behavior.
(A) En...
(A) Enzymatic activity of 10 ng purified GLO1 protein treated with vehicle or 100 μM BrBzGCp2 (n = 3 vehicle and 4 BrBzGCp2). (B) HPLC measurement of MG concentration in whole brain 2 hours after i.p. treatment with vehicle or BrBzGSHCp2. Assay order had a significant effect on MG concentration and was used as a covariate in a 1-way ANCOVA for the factor treatment (n = 8 per group). P < 0.0001. (C and D) B6 mice were treated with i.p. vehicle or 30 mg/kg BrBzGCp2 and then tested in the OF test 2 hours after injection (n = 25 vehicle and 24 BrBzGCp2). (C) Center time. (D) Total distance. mU, milliunits (μmol/min). Data are mean ± sem. *P < 0.05, **P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts