Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis
Sichuan Xi, … , Leandro Mercedes, David S. Schrump
Sichuan Xi, … , Leandro Mercedes, David S. Schrump
Published February 15, 2013
Citation Information: J Clin Invest. 2013;123(3):1241-1261. https://doi.org/10.1172/JCI61271.
View: Text | PDF
Research Article Oncology

Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis

  • Text
  • PDF
Abstract

MicroRNAs are critical mediators of stem cell pluripotency, differentiation, and malignancy. Limited information exists regarding microRNA alterations that facilitate initiation and progression of human lung cancers. In this study, array techniques were used to evaluate microRNA expression in normal human respiratory epithelia and lung cancer cells cultured in the presence or absence of cigarette smoke condensate (CSC). Under relevant exposure conditions, CSC significantly repressed miR-487b. Subsequent experiments demonstrated that miR-487b directly targeted SUZ12, BMI1, WNT5A, MYC, and KRAS. Repression of miR-487b correlated with overexpression of these targets in primary lung cancers and coincided with DNA methylation, de novo nucleosome occupancy, and decreased H2AZ and TCF1 levels within the miR-487b genomic locus. Deoxy-azacytidine derepressed miR-487b and attenuated CSC-mediated silencing of miR-487b. Constitutive expression of miR-487b abrogated Wnt signaling, inhibited in vitro proliferation and invasion of lung cancer cells mediated by CSC or overexpression of miR-487b targets, and decreased growth and metastatic potential of lung cancer cells in vivo. Collectively, these findings indicate that miR-487b is a tumor suppressor microRNA silenced by epigenetic mechanisms during tobacco-induced pulmonary carcinogenesis and suggest that DNA demethylating agents may be useful for activating miR-487b for lung cancer therapy.

Authors

Sichuan Xi, Hong Xu, Jigui Shan, Yongguang Tao, Julie A. Hong, Suzanne Inchauste, Mary Zhang, Tricia F. Kunst, Leandro Mercedes, David S. Schrump

×

Figure 1

Expression of miR-487b in cultured cells as well as primary lung cancers and adjacent normal lung tissues.

Options: View larger image (or click on image) Download as PowerPoint
Expression of miR-487b in cultured cells as well as primary lung cancers...
(A) qRT-PCR analysis of endogenous miR-487b expression normalized with control miRNA (RNU44) in SAECs, HBECs, Calu-6, and H841 cells. (B) qRT-PCR analysis demonstrating downregulation of miR-487b in cultured cells following 5-day CSC exposure. Repression of miR-487b persisted following discontinuation of CSC treatment. (C) qRT-PCR analysis demonstrating time-dependent repression of miR-487b in SAECs, HBECs, Calu-6, and H841 cells following CSC exposure. (D) qRT-PCR analysis demonstrating dose-dependent repression of miR-487b in lung cancer cells by nicotine, which leveled off with concentrations of 100 μg/ml or more following 5-day exposure. (E) qRT-PCR analysis of miR-487b expression in human lung cancers relative to paired adjacent normal lung tissues (n = 51). miR-487b levels were significantly lower in cancers relative to corresponding adjacent normal lung tissues. Furthermore, miR-487b levels were significantly more repressed in lung cancers from active/former smokers compared with those from never smokers. *P < 0.05; **P < 0.01.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts