Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Molecular genetics of B-precursor acute lymphoblastic leukemia
Charles G. Mullighan
Charles G. Mullighan
Published October 1, 2012
Citation Information: J Clin Invest. 2012;122(10):3407-3415. https://doi.org/10.1172/JCI61203.
View: Text | PDF
Review Series

Molecular genetics of B-precursor acute lymphoblastic leukemia

  • Text
  • PDF
Abstract

B-precursor acute lymphoblastic leukemia (B-ALL) is the most common childhood tumor and the leading cause of cancer-related death in children and young adults. The majority of B-ALL cases are aneuploid or harbor recurring structural chromosomal rearrangements that are important initiating events in leukemogenesis but are insufficient to explain the biology and heterogeneity of disease. Recent studies have used microarrays and sequencing to comprehensively identify all somatic genetic alterations in acute lymphoblastic leukemia (ALL). These studies have identified cryptic or submicroscopic genetic alterations that define new ALL subtypes, cooperate with known chromosomal rearrangements, and influence prognosis. This article reviews these advances, discusses results from ongoing second-generation sequencing studies of ALL, and highlights challenges and opportunities for future genetic profiling approaches.

Authors

Charles G. Mullighan

×

Figure 2

Patterns of genomic evolution from diagnosis to relapse in ALL.

Options: View larger image (or click on image) Download as PowerPoint
Patterns of genomic evolution from diagnosis to relapse in ALL.
Leukemic...
Leukemic clones at relapse are frequently related to leukemic clones present at diagnosis. In more than half of cases, the relapse clone arises from a clone present prior to diagnosis, retaining some but not all of the lesions found at diagnosis and containing some additional mutations. The relapse clone is often present as a rare subclone within the diagnostic sample. Alternatively, cases of relapse can stem from the diagnosis clone, acquiring additional mutations. Less commonly, the relapse clone may be identical to the diagnosis clone or appear to be an unrelated second leukemia.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts