Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
HDAC4 controls histone methylation in response to elevated cardiac load
Mathias Hohl, … , Johannes Backs, Christoph Maack
Mathias Hohl, … , Johannes Backs, Christoph Maack
Published February 22, 2013
Citation Information: J Clin Invest. 2013;123(3):1359-1370. https://doi.org/10.1172/JCI61084.
View: Text | PDF
Research Article Cardiology

HDAC4 controls histone methylation in response to elevated cardiac load

  • Text
  • PDF
Abstract

In patients with heart failure, reactivation of a fetal gene program, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), is a hallmark for maladaptive remodeling of the LV. The mechanisms that regulate this reactivation are incompletely understood. Histone acetylation and methylation affect the conformation of chromatin, which in turn governs the accessibility of DNA for transcription factors. Using human LV myocardium, we found that, despite nuclear export of histone deacetylase 4 (HDAC4), upregulation of ANP and BNP in failing hearts did not require increased histone acetylation in the promoter regions of these genes. In contrast, di- and trimethylation of lysine 9 of histone 3 (H3K9) and binding of heterochromatin protein 1 (HP1) in the promoter regions of these genes were substantially reduced. In isolated working murine hearts, an acute increase of cardiac preload induced HDAC4 nuclear export, H3K9 demethylation, HP1 dissociation from the promoter region, and activation of the ANP gene. These processes were reversed in hearts with myocyte-specific deletion of Hdac4. We conclude that HDAC4 plays a central role for rapid modifications of histone methylation in response to variations in cardiac load and may represent a target for pharmacological interventions to prevent maladaptive remodeling in patients with heart failure.

Authors

Mathias Hohl, Michael Wagner, Jan-Christian Reil, Sarah-Anne Müller, Marcus Tauchnitz, Angela M. Zimmer, Lorenz H. Lehmann, Gerald Thiel, Michael Böhm, Johannes Backs, Christoph Maack

×

Figure 1

Reactivation of ANP and BNP in human failing myocardium.

Options: View larger image (or click on image) Download as PowerPoint
Reactivation of ANP and BNP in human failing myocardium.
 
Gene expressi...
Gene expression of ANP (A), BNP (B), α-MHC (D), and SERCA2a (E) in human nonfailing (NF; n = 8) and failing (F; n = 16) myocardium. Correlation between ANP and BNP expression (C) and between BNP and SERCA2a expression (F). Boxes denote interquartile range; lines within boxes denote median; whiskers denote range. *P < 0.05, **P < 0.01, ***P < 0.005 vs. nonfailing.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts