Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Combining Cep290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis
Rivka A. Rachel, … , Matthew W. Kelley, Anand Swaroop
Rivka A. Rachel, … , Matthew W. Kelley, Anand Swaroop
Published March 26, 2012
Citation Information: J Clin Invest. 2012;122(4):1233-1245. https://doi.org/10.1172/JCI60981.
View: Text | PDF | Corrigendum
Research Article

Combining Cep290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis

  • Text
  • PDF
Abstract

Cilia are highly specialized microtubule-based organelles that have pivotal roles in numerous biological processes, including transducing sensory signals. Defects in cilia biogenesis and transport cause pleiotropic human ciliopathies. Mutations in over 30 different genes can lead to cilia defects, and complex interactions exist among ciliopathy-associated proteins. Mutations of the centrosomal protein 290 kDa (CEP290) lead to distinct clinical manifestations, including Leber congenital amaurosis (LCA), a hereditary cause of blindness due to photoreceptor degeneration. Mice homozygous for a mutant Cep290 allele (Cep290rd16 mice) exhibit LCA-like early-onset retinal degeneration that is caused by an in-frame deletion in the CEP290 protein. Here, we show that the domain deleted in the protein encoded by the Cep290rd16 allele directly interacts with another ciliopathy protein, MKKS. MKKS mutations identified in patients with the ciliopathy Bardet-Biedl syndrome disrupted this interaction. In zebrafish embryos, combined subminimal knockdown of mkks and cep290 produced sensory defects in the eye and inner ear. Intriguingly, combinations of Cep290rd16 and Mkksko alleles in mice led to improved ciliogenesis and sensory functions compared with those of either mutant alone. We propose that altered association of CEP290 and MKKS affects the integrity of multiprotein complexes at the cilia transition zone and basal body. Amelioration of the sensory phenotypes caused by specific mutations in one protein by removal of an interacting domain/protein suggests a possible novel approach for treating human ciliopathies.

Authors

Rivka A. Rachel, Helen L. May-Simera, Shobi Veleri, Norimoto Gotoh, Byung Yoon Choi, Carlos Murga-Zamalloa, Jeremy C. McIntyre, Jonah Marek, Irma Lopez, Alice N. Hackett, Matthew Brooks, Anneke I. den Hollander, Philip L. Beales, Tiansen Li, Samuel G. Jacobson, Raman Sood, Jeffrey R. Martens, Paul Liu, Thomas B. Friedman, Hemant Khanna, Robert K. Koenekoop, Matthew W. Kelley, Anand Swaroop

×

Figure 5

Ultrastructural (EM) analysis of cilia and basal bodies in P14 WT mouse retinal photoreceptors.

Options: View larger image (or click on image) Download as PowerPoint
Ultrastructural (EM) analysis of cilia and basal bodies in P14 WT mouse ...
(A) Ultrastructural (EM) analysis of cilia and basal bodies in P14 WT mouse retinal photoreceptors. The left panel shows a longitudinal section electron micrograph, with white lines indicating the plane of the cross section electron micrographs (middle panel) through, 1, the basal body; 2, transition zone; 3, connecting cilium; and 4, axoneme of OSs. The right panel shows a representative cross section through inner/OS junction and illustrates each structure in situ. Original magnification, ×20,000. (B) Basal bodies, 1, and connecting cilia, 3, in cross section, showing the normal 9 + 0 arrangement of the microtubule bundles in P14 WT and Cep290rd16/rd16 animals. In Mkksko/ko animals, note the diffuse pericentriolar material surrounding the basal body (white arrows) and flattened cilium (red arrow). Cep290rd16/+;Mkksko/ko mice have improved ciliary and basal body morphology compared with that of single homozygotes. Black arrows indicate comparison between Mkksko/ko and Cep290rd16/+;Mkksko/ko genotypes. Additional examples of cilia and basal bodies for each genotype are shown in Supplemental Figure 3. Original magnification, ×50,000. (C) Quantitation of connecting cilium short/long diameter ratio in WT, Mkksko/ko, and Cep290rd16/+;Mkksko/ko genotypes, showing rescue of cilia cross-sectional shape in the triallelic genotype. Original magnification, ×50,000. Error bars are SEM; n = 4 (WT), n = 7 (Mkksko/ko), and n = 4 (Cep290rd16/+;Mkksko/ko).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts