Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors
Walter J. Jessen, Shyra J. Miller, Edwin Jousma, Jianqiang Wu, Tilat A. Rizvi, Meghan E. Brundage, David Eaves, Brigitte Widemann, Mi-Ok Kim, Eva Dombi, Jessica Sabo, Atira Hardiman Dudley, Michiko Niwa-Kawakita, Grier P. Page, Marco Giovannini, Bruce J. Aronow, Timothy P. Cripe, Nancy Ratner
Walter J. Jessen, Shyra J. Miller, Edwin Jousma, Jianqiang Wu, Tilat A. Rizvi, Meghan E. Brundage, David Eaves, Brigitte Widemann, Mi-Ok Kim, Eva Dombi, Jessica Sabo, Atira Hardiman Dudley, Michiko Niwa-Kawakita, Grier P. Page, Marco Giovannini, Bruce J. Aronow, Timothy P. Cripe, Nancy Ratner
View: Text | PDF
Research Article

MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors

  • Text
  • PDF
Abstract

Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown. We performed cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs and identified global negative feedback of genes that regulate Ras/Raf/MEK/ERK signaling in both species. Nonetheless, ERK activation was sustained in mouse and human neurofibromas and MPNST. We used a highly selective pharmacological inhibitor of MEK, PD0325901, to test whether sustained Ras/Raf/MEK/ERK signaling contributes to neurofibroma growth in a neurofibromatosis mouse model (Nf1fl/fl;Dhh-Cre) or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in more than 80% of mice tested. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide a strong rationale for testing MEK inhibitors in NF1 clinical trials.

Authors

Walter J. Jessen, Shyra J. Miller, Edwin Jousma, Jianqiang Wu, Tilat A. Rizvi, Meghan E. Brundage, David Eaves, Brigitte Widemann, Mi-Ok Kim, Eva Dombi, Jessica Sabo, Atira Hardiman Dudley, Michiko Niwa-Kawakita, Grier P. Page, Marco Giovannini, Bruce J. Aronow, Timothy P. Cripe, Nancy Ratner

×

Figure 3

Molecular mechanism of PD0325901 in Nf1fl/fl;Dhh-Cre neurofibromas and MPNST xenografts.

Options: View larger image (or click on image) Download as PowerPoint
Molecular mechanism of PD0325901 in Nf1fl/fl;Dhh-Cre neurofibromas and M...
(A and B) Assessment of proliferation in neurofibromas and MPNSTs by quantification of Ki67+ cells as compared with hematoxylin-stained nuclei. (A) Neurofibromas in Nf1fl/fl;Dhh-Cre mice treated with 1.5, 5.0, or 10 mg/kg PD0325901 for 60 days showed a significant (***P < 0.001) reduction in the percentage of Ki67+ cells relative to mice treated with control vehicle. (B) Mice harboring MPNST xenografts treated with PD0325901 for 11 days and 28 days show a significant (*P < 0.05) reduction in the percentage of Ki67+ cells relative to mice treated with control vehicle. (C and D) Labeling of Ki67+ proliferating cells (green), CNPase+ (red) Schwann cells, and DAPI+ (blue) cell nuclei in Nf1fl/fl;Dhh-Cre neurofibromas (C) and MPNST xenografts (D). Arrows represent double-label cells (Ki67+; CNPase+). Scale bar: 50 μm. (E and F) Assessment of vasculature in neurofibromas and MPNSTs by quantification of MECA+ endothelial cells. Number of blood vessels per high-powered field was significantly (**P < 0.01) reduced in both neurofibromas (E) and MPNSTs (F) in response to PD0325901. (G–J) p-S6K is detected in mouse neurofibromas (G and H) and human MPNST xenografts (I and J); p-S6K levels decrease in response to treatment with PD0325901 (H and J) relative to control (G and I). (K–N) p-AKT is detected in mouse neurofibromas (K and L) and human MPNST xenografts (M and N), and p-AKT levels do not change in response to treatment with PD0325901 (L and N) relative to control (K and M). Scale bars: 50 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts