Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Integrin α9β1 in airway smooth muscle suppresses exaggerated airway narrowing
Chun Chen, … , Xiaozhu Huang, Dean Sheppard
Chun Chen, … , Xiaozhu Huang, Dean Sheppard
Published July 9, 2012
Citation Information: J Clin Invest. 2012;122(8):2916-2927. https://doi.org/10.1172/JCI60387.
View: Text | PDF
Research Article Inflammation

Integrin α9β1 in airway smooth muscle suppresses exaggerated airway narrowing

  • Text
  • PDF
Abstract

Exaggerated contraction of airway smooth muscle is the major cause of symptoms in asthma, but the mechanisms that prevent exaggerated contraction are incompletely understood. Here, we showed that integrin α9β1 on airway smooth muscle localizes the polyamine catabolizing enzyme spermidine/spermine N1-acetyltransferase (SSAT) in close proximity to the lipid kinase PIP5K1γ. As PIP5K1γ is the major source of PIP2 in airway smooth muscle and its activity is regulated by higher-order polyamines, this interaction inhibited IP3-dependent airway smooth muscle contraction. Mice lacking integrin α9β1 in smooth muscle had increased airway responsiveness in vivo, and loss or inhibition of integrin α9β1 increased in vitro airway narrowing and airway smooth muscle contraction in murine and human airways. Contraction was enhanced in control airways by the higher-order polyamine spermine or by cell-permeable PIP2, but these interventions had no effect on airways lacking integrin α9β1 or treated with integrin α9β1–blocking antibodies. Enhancement of SSAT activity or knockdown of PIP5K1γ inhibited airway contraction, but only in the presence of functional integrin α9β1. Therefore, integrin α9β1 appears to serve as a brake on airway smooth muscle contraction by recruiting SSAT, which facilitates local catabolism of polyamines and thereby inhibits PIP5K1γ. Targeting key components of this pathway could thus lead to new treatment strategies for asthma.

Authors

Chun Chen, Makoto Kudo, Florentine Rutaganira, Hiromi Takano, Candace Lee, Amha Atakilit, Kathryn S. Robinett, Toshimitsu Uede, Paul J. Wolters, Kevan M. Shokat, Xiaozhu Huang, Dean Sheppard

×

Figure 3

Increased tension generation in tracheal rings from α9smKO mice.

Options: View larger image (or click on image) Download as PowerPoint
Increased tension generation in tracheal rings from α9smKO mice.
 
(A an...
(A and B) Force generation in response to methacholine (A) and KCl (B) by tracheal rings from WT control or α9smKO mice. (C and D) Force generation in response to methacholine (C) and KCl (D) by tracheal rings from WT mice pretreated in vitro with blocking antibody or control antibody. (E and F) Tracheal rings from Itga9fl/fl mice were infected with adenovirus expressing Cre recombinase or GFP (as control) for 3 days before assessment of contractile response to methacholine (E) and KCl (F). Results (mean ± SEM) are representative of 2 independent experiments (n = 10). *P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts