The endothelial nitric oxide synthase (eNOS) gene is induced by a variety of extracellular signals under both in vitro and in vivo conditions. To gain insight into the mechanisms underlying environmental regulation of eNos expression, transgenic mice were generated with the 1,600-bp 5′ flanking region of the human eNos promoter coupled to the coding region of the LacZ gene. In multiple independent lines of mice, transgene expression was detected within the endothelium of the brain, heart, skeletal muscle, and aorta. β-galactosidase activity was consistently absent in the vascular beds of the liver, kidney, and spleen. In stable transfection assays of murine endothelial progenitor cells, the 1,600-bp promoter region was selectively induced by conditioned media from cardiac myocytes, skeletal myocytes, and brain astrocytes. Cardiac myocyte–mediated induction was partly abrogated by neutralizing anti–platelet-derived growth factor (PDGF) antibodies. In addition, promoter activity was upregulated by PDGF-AB. Analysis of promoter deletions revealed that a PDGF response element lies between –744 and –1,600 relative to the start site of transcription, whereas a PDGF-independent cardiac myocyte response element is present within the first 166 bp of the 5′ flanking region. Taken together, these results suggest that the eNos gene is regulated in the cardiac endothelium by both a PDGF-dependent and PDGF-independent microvascular bed–specific signaling pathway.
Pascale V. Guillot, Jason Guan, Lixin Liu, Jan A. Kuivenhoven, Robert D. Rosenberg, William C. Sessa, William C. Aird
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 357 | 9 |
62 | 12 | |
Figure | 210 | 3 |
Citation downloads | 68 | 0 |
Totals | 697 | 24 |
Total Views | 721 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.