Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma
Zhi-Zhang Yang, … , Thomas E. Witzig, Stephen M. Ansell
Zhi-Zhang Yang, … , Thomas E. Witzig, Stephen M. Ansell
Published March 19, 2012
Citation Information: J Clin Invest. 2012;122(4):1271-1282. https://doi.org/10.1172/JCI59806.
View: Text | PDF
Research Article Oncology

IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma

  • Text
  • PDF
Abstract

The cytokine IL-12 induces IFN-γ production by T and NK cells. In preclinical models, it contributes to antitumor immunity. However, in clinical testing, it has shown limited benefit in patients with any one of a variety of malignancies. Moreover, in a clinical trial testing a combination of IL-12 and rituximab in patients with follicular B cell non-Hodgkin lymphoma (FL), those treated with IL-12 showed a lower response rate, suggesting that IL-12 actually plays a detrimental role. Here, we investigated whether the failure of IL-12 treatment for FL was due to T cell exhaustion, a condition characterized by reduced T cell differentiation, proliferation, and function, which has been observed in chronic viral infection. We found that extended exposure to IL-12 induced T cell exhaustion and contributed to the poor prognosis in FL patients. Long-term exposure of freshly isolated human CD4+ T cells to IL-12 in vitro caused T cell dysfunction and induced expression of TIM-3, a T cell immunoglobulin and mucin domain protein with a known role in T cell exhaustion, via an IFN-γ–independent mechanism. TIM-3 was required for the negative effect of IL-12 on T cell function. Importantly, TIM-3 also was highly expressed on intratumoral T cells that displayed marked functional impairment. Our findings identify IL-12– and TIM-3–mediated exhaustion of T cells as a mechanism for poor clinical outcome when IL-12 is administered to FL patients.

Authors

Zhi-Zhang Yang, Deanna M. Grote, Steven C. Ziesmer, Toshiro Niki, Mitsuomi Hirashima, Anne J. Novak, Thomas E. Witzig, Stephen M. Ansell

×

Figure 6

Effect of blockade of TIM-3 signaling on restoration of IL-12–mediated T cell dysfunction.

Options: View larger image (or click on image) Download as PowerPoint
Effect of blockade of TIM-3 signaling on restoration of IL-12–mediated T...
(A) Representative dot plots showing IL-2 and IFN-γ production in CD4+ T cells treated with either anti–TIM-3 Ab or isotype IgG in the presence of IL-12 at different time points (n = 5). IL-2 and IFN-γ production were detected by intracellular staining. (B) Representative histograms showing proliferation of CD4+ T cells treated with or without anti–TIM-3 Abs or isotype IgG control. Proliferation was measured by CFSE staining and expressed as the number of CFSEdim cells. (C) Representative dot plots showing IL-2 (upper panels) and IFN-γ (lower panels) production in TIM-3– or TIM-3+ CD4+ T cells treated with either anti–TIM-3 Abs or isotype IgG in the presence of IL-12 at different time points (n = 5). IL-2 and IFN-γ production were detected by intracellular staining. Percentage of total cell numbers are indicated (A and C). (D) A summary of frequency of IL-2– or IFN-γ–producing cells in TIM-3– or TIM-3+ CD4+ T cells treated with either anti–TIM-3 Ab (+) or isotype IgG (–) in the presence of IL-12 for 10 days (n = 5). IL-2 or IFN-γ production in TIM-3– or TIM-3+ CD4+ T cells was measured by intracellular staining and calculated as percentage of total CD4+ cells. Data are shown as mean ± SD. *P < 0.05.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts