Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H
Elena Kudryashova, … , Irina Kramerova, Melissa J. Spencer
Elena Kudryashova, … , Irina Kramerova, Melissa J. Spencer
Published April 16, 2012
Citation Information: J Clin Invest. 2012;122(5):1764-1776. https://doi.org/10.1172/JCI59581.
View: Text | PDF
Research Article Muscle biology

Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H

  • Text
  • PDF
Abstract

Mutations in the E3 ubiquitin ligase tripartite motif-containing 32 (TRIM32) are responsible for the disease limb-girdle muscular dystrophy 2H (LGMD2H). Previously, we generated Trim32 knockout mice (Trim32–/– mice) and showed that they display a myopathic phenotype accompanied by neurogenic features. Here, we used these mice to investigate the muscle-specific defects arising from the absence of TRIM32, which underlie the myopathic phenotype. Using 2 models of induced atrophy, we showed that TRIM32 is dispensable for muscle atrophy. Conversely, TRIM32 was necessary for muscle regrowth after atrophy. Furthermore, TRIM32-deficient primary myoblasts underwent premature senescence and impaired myogenesis due to accumulation of PIAS4, an E3 SUMO ligase and TRIM32 substrate that was previously shown to be associated with senescence. Premature senescence of myoblasts was also observed in vivo in an atrophy/regrowth model. Trim32–/– muscles had substantially fewer activated satellite cells, increased PIAS4 levels, and growth failure compared with wild-type muscles. Moreover, Trim32–/– muscles exhibited features of premature sarcopenia, such as selective type II fast fiber atrophy. These results imply that premature senescence of muscle satellite cells is an underlying pathogenic feature of LGMD2H and reveal what we believe to be a new mechanism of muscular dystrophy associated with reductions in available satellite cells and premature sarcopenia.

Authors

Elena Kudryashova, Irina Kramerova, Melissa J. Spencer

×

Figure 1

Fasting-induced atrophy occurs normally in Trim32–/– mice.

Options: View larger image (or click on image) Download as PowerPoint
Fasting-induced atrophy occurs normally in Trim32–/– mice.
   
(A) A sta...
(A) A statistically significant (P < 0.05) body weight reduction due to 24 or 48 hours of fasting was observed in mice of both genotypes. The rate of body weight reduction in Trim32–/– fasting mice is indistinguishable from the Trim32+/+ rate (n = 4). Error bars represent sem. (B) After 48 hours of food deprivation, gastrocnemius muscle weight was reduced by 20%, similarly in Trim32–/– and Trim32+/+ mice. (C) Accumulation of high-molecular weight ubiquitin-protein conjugates occurs similarly in Trim32–/– and Trim32+/+ myofibrils, as demonstrated by anti-ubiquitin (Ub) Western blot staining. A representative blot is shown. Ponceau S staining is shown as a loading control. (D) Ratios of major myofibrillar proteins, myosin heavy chain (MyHC) to actin and actin to desmin, were assessed in myofibrils isolated from Trim32+/+ and Trim32–/– fed mice and 48 hour–fasted mice by densitometry of Coomassie-stained SDS-PAGE. No difference was observed between Trim32–/– and Trim32+/+ samples.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts