Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency
Yuko Kurosawa, … , Stephen C. Benoit, Joseph F. Clark
Yuko Kurosawa, … , Stephen C. Benoit, Joseph F. Clark
Published July 2, 2012
Citation Information: J Clin Invest. 2012;122(8):2837-2846. https://doi.org/10.1172/JCI59373.
View: Text | PDF
Research Article Neuroscience

Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency

  • Text
  • PDF
Abstract

The second-largest cause of X-linked mental retardation is a deficiency in creatine transporter (CRT; encoded by SLC6A8), which leads to speech and language disorders with severe cognitive impairment. This syndrome, caused by the absence of creatine in the brain, is currently untreatable because CRT is required for creatine entry into brain cells. Here, we developed a brain-specific Slc6a8 knockout mouse (Slc6a8–/y) as an animal model of human CRT deficiency in order to explore potential therapies for this syndrome. The phenotype of the Slc6a8–/y mouse was comparable to that of human patients. We successfully treated the Slc6a8–/y mice with the creatine analog cyclocreatine. Brain cyclocreatine and cyclocreatine phosphate were detected after 9 weeks of cyclocreatine treatment in Slc6a8–/y mice, in contrast to the same mice treated with creatine or placebo. Cyclocreatine-treated Slc6a8–/y mice also exhibited a profound improvement in cognitive abilities, as seen with novel object recognition as well as spatial learning and memory tests. Thus, cyclocreatine appears promising as a potential therapy for CRT deficiency.

Authors

Yuko Kurosawa, Ton J. DeGrauw, Diana M. Lindquist, Victor M. Blanco, Gail J. Pyne-Geithman, Takiko Daikoku, James B. Chambers, Stephen C. Benoit, Joseph F. Clark

×

Figure 1

Chemical structural formulas of cyclocreatine and creatine.

Options: View larger image (or click on image) Download as PowerPoint
Chemical structural formulas of cyclocreatine and creatine.
Cyclocreatin...
Cyclocreatine is a kinetically similar analog of creatine that is phosphorylated and dephosphorylated by mitochondrial and cytosolic CKs. As a small, relatively planar molecule, cyclocreatine has the chemical characteristics to cross membranes.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts