Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Protease nexin 1 inhibits hedgehog signaling in prostate adenocarcinoma
Chad M. McKee, … , Robert G. Bristow, Ruth J. Muschel
Chad M. McKee, … , Robert G. Bristow, Ruth J. Muschel
Published October 8, 2012
Citation Information: J Clin Invest. 2012;122(11):4025-4036. https://doi.org/10.1172/JCI59348.
View: Text | PDF
Research Article Oncology

Protease nexin 1 inhibits hedgehog signaling in prostate adenocarcinoma

  • Text
  • PDF
Abstract

Prostate adenocarcinoma (CaP) patients are classified into low-, intermediate-, and high-risk groups that reflect relative survival categories. While there are accepted treatment regimens for low- and high-risk patients, intermediate-risk patients pose a clinical dilemma, as treatment outcomes are highly variable for these individuals. A better understanding of the factors that regulate the progression of CaP is required to delineate risk. For example, aberrant activation of the Hedgehog (Hh) pathway is implicated in CaP progression. Here, we identify the serine protease inhibitor protease nexin 1 (PN1) as a negative regulator of Hh signaling in prostate. Using human CaP cell lines and a mouse xenograft model of CaP, we demonstrate that PN1 regulates Hh signaling by decreasing protein levels of the Hh ligand Sonic (SHH) and its downstream effectors. Furthermore, we show that SHH expression enhanced tumor growth while overexpression of PN1 inhibited tumor growth and angiogenesis in mice. Finally, using comparative genome hybridization, we found that genetic alterations in Hh pathway genes correlated with worse clinical outcomes in intermediate-risk CaP patients, indicating the importance of this pathway in CaP.

Authors

Chad M. McKee, Danmei Xu, Yunhong Cao, Sheheryar Kabraji, Danny Allen, Veerle Kersemans, John Beech, Sean Smart, Freddie Hamdy, Adrian Ishkanian, Jenna Sykes, Melania Pintile, Michael Milosevic, Theodorus van der Kwast, Gaetano Zafarana, Varune Rohan Ramnarine, Igor Jurisica, Chad Mallof, Wan Lam, Robert G. Bristow, Ruth J. Muschel

×

Figure 2

PN1 reduces proliferation and increases apoptosis in metastatic prostate cancer cells.

Options: View larger image (or click on image) Download as PowerPoint
PN1 reduces proliferation and increases apoptosis in metastatic prostate...
PC3 cells were transfected with a PN1 expression plasmid or empty vector (2 μM) and treated with cyclopamine (10 μM) as indicated. PN1 expression affects (A) cell numbers (Student’s t test, n = 3), (B) proliferation (alamarBlue assay, 1-way ANOVA, n = 3), (C) apoptosis (annexin-PI assay, 1-way ANOVA, n = 3), and (D) cleavage of caspase-3 (19-kDa active band) and PARP (89-kDa active band). *P ≤ 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts