Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Introduction
  • A synaptic relay race with the pathogen
  • Phosphatase exclusion from microclusters
  • Force-dependent coincidence detection in T cell synapses
  • Organizing information in synapses
  • Neuroimmune synapses and the inflammatory reflex
  • Conclusions
  • Acknowledgments
  • Footnotes
  • References
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Review Free access | 10.1172/JCI58705

Signaling at neuro/immune synapses

Michael L. Dustin

The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA.

Address correspondence to: Michael Dustin, New York University School of Medicine, 540 First Avenue, SKI2-4, New York, New York 10016, USA. Phone: 212.263.3207; Fax: 212.263.5711; E-mail: michael.dustin@med.nyu.edu.

Find articles by Dustin, M. in: JCI | PubMed | Google Scholar

Published April 2, 2012 - More info

Published in Volume 122, Issue 4 on April 2, 2012
J Clin Invest. 2012;122(4):1149–1155. https://doi.org/10.1172/JCI58705.
© 2012 The American Society for Clinical Investigation
Published April 2, 2012 - Version history
View PDF
Abstract

Immunological and neural synapses share properties such as the synaptic cleft, adhesion molecules, stability, and polarity. However, the mismatch in scale has limited the utility of these comparisons. The discovery of phosphatase micro-exclusion from signaling elements in immunological synapses and innate phagocytic synapses define a common functional unit at a common sub-micron scale across synapse types. Bundling of information from multiple antigen receptor microclusters by an immunological synapse has parallels to bundling of multiple synaptic inputs into a single axonal output by neurons, allowing integration and coincidence detection. Bonafide neuroimmune synapses control the inflammatory reflex. A better understanding of the shared mechanisms between immunological and neural synapses could aid in the development of new therapeutic modalities for immunological, neurological, and neuroimmunological disorders alike.

Introduction

Cell-cell communication systems in the immune and nervous systems share several features, which has led to the adoption of the common term “synapse” to describe the close cell-cell contacts in each. Chemical synapses in the nervous system can be defined as sites of stability, polarity, and vectoral communication, where two cells may adhere without fusion (1). The concept of the immune synapse was first applied to cells of the adaptive immune system, T and B cells, but has since expanded to include interactions involving innate immune cells such as NK cells and, more recently, phagocytes (2–7). Herein we refer to data from phagocytic, T cell, B cell, and NK cell synapses as specific subtypes of immunological synapses. Among all synapses, phagocytic synapses might serve as an ancestral template. Phagocytosis evolved in early single-cell organisms and allowed them to more efficiently compete for nutrients in the environment; the phagocytosis receptor system utilized by soil amoeba is similar to that employed by innate immune cells of mammals (8). While the term “phagocytic synapse” could be used in a general sense based on early studies of junctions driven by phagocytic receptors (9), the first effort to address how phagocytosis is selectively triggered by particulate, but not polyvalent, soluble ligands engaging the same receptors led to the proposal of a phagocytic synapse (ref. 7 and Figure 1, A and B). The threshold is a diameter of approximately 0.5 μm, which is similar to the size of T cell antigen receptor (TCR) microclusters that drive signaling in T cells (ref. 10 and Figure 1, C and D), and is the characteristic size of the neural synaptic connections (ref. 11 and Figure 1, E and F). In this review I discuss the molecular basis of the convergence on a submicron scale for basic elements, consider signal integration by immune cells and neurons, and discuss central control of inflammation through neuroimmune synapses.

Role of submicron receptor complexes in immunological and neural synapses.Figure 1

Role of submicron receptor complexes in immunological and neural synapses. (A) Phagocytosis is triggered when CD45 and CD148 are excluded from a region more than 0.5 μm in diameter in which Syk is phosphorylated. (B) Micrograph of a phagocytic synapse. Scale bar: 4 μm. Arrow indicates the exclusion zone. Reproduced with permission from Nature (7). (C) T cell synapses are larger interfaces in which TCR microclusters that exclude CD45 are formed. These are linked by mysosin II–based contractility to augment signaling and trigger effector functions. Linkage of microclusters through myosin II ensures that T cells respond to multiple coincident MHC-peptide signals. Inset: TCR/MHC-peptide interactions with the support of adhesion molecules form microclusters that exclude CD45 and trigger robust tyrosine phosphorylation. TCR microclusters are short lived. (D) Micrograph of a T cell synapse. Scale bar: 4 μm. Arrow points to an example of a microcluster. Reproduced with permission from Nature (10). (E) Neural synapses are stabilized by adhesion molecules and can recruit receptor tyrosine kinases. More restrained signaling may promote a longer-lived junction than can then be used to process action potentials into chemical synapse and compute one output from many inputs. Eph, Eph family tyrosine kinase; PTP, protein tyrosine phosphatase; NT, neurotransmitter. (F) Microgaph of a neural synapse. Green indicates receptor-type protein tyrosine phosphatase ρ, red indicates neuroligin, blue indicates PSD-95. Scale bar: 4 μm. Arrows indicate examples of RPTPρ colocalization with neuroligin. Reproduced with permission from EMBO Journal (43).

A synaptic relay race with the pathogen

In the nervous system, even simple activities require the serial and parallel function of multiple synaptic connections. Similarly, the immune response is a relay race against the pathogen in which the baton is passed from innate to adaptive immune cells (Figure 2). Recent research suggests that multiple immune cell types employ similar molecular strategies, based on phosphatase exclusion, to target pathogens (7, 10, 12). Immature DCs phagocytose cell fragments greater than 0.5 μm in diameter, an innate immune function (innate leg in Figure 2A and ref. 13). This takes a matter of seconds, and detection of components associated with a live infection, such as microbial RNA, leads to maturation of the DCs and their migration to lymph nodes (14). Partial proteolytic degradation of the phagocytosed material allows for association of component peptides with MHC class II molecules that are routed to the cell’s surface for priming of helper T cell precursors, the afferent phase of adaptive immunity (afferent leg in Figure 2A and ref. 15). DCs can also divert peptides to the MHC class I system in the endoplasmic reticulum for priming of cytotoxic T cell precursors (16). T and B cells utilize diverse repertoires of antigen receptors that are generated by somatic gene rearrangement, and the MHC-peptide complex–bearing DCs need to search through this repertoire to find T cells with the appropriate receptors. The DCs form dense networks in secondary lymphoid tissues and contact approximately 5,000 T cells per hour as the T cells move over reticular networks (17–19). Within a day, rare antigen-specific T cells locate these DCs and initiate clonal expansion as well as conditions for an immune response through the formation of provisionally stable T cell–DC interactions lasting on the order of 24 hours (20); by comparison, neural synapses may be stable for years (21). Nonetheless, in the absence of these stable interactions, the generation of long-lived memory T cells fails (22). After clonal expansion, the MHC class I restricted T cells can use a synapse to kill target cells, the efferent phase of adaptive immunity (efferent leg in Figure 2A and ref. 23), whereas the MHC class II restricted cells may use a synapse to help B cells generate neutralizing antibodies (efferent leg in Figure 2A and ref. 24).

Immunological relay race.Figure 2

Immunological relay race. (A) The immune response is based on a series of immunological synapses with a common mechanism based on phosphatase exclusion. Innate leg: An intracellular pathogen infects cells, activating innate sensing mechanisms and leading to phagocytosis by an immature DC (iDC). This phagocytic synapse contributes to maturation of the DC (mDC). If the pathogen downregulates MHC class I in the infected cell, then the infected cell can be directly recognized by NK cells. Afferent leg: The mDC presents antigens on MHC class I to cytotoxic T cell precursors (CD8), on MHC class II to helper T cell precursors (CD4), and as intact complexes to B cells. Efferent leg: CTLs can directly kill MHC class I–positive infected cells, and the infected target induces cytokine production by the CD8 T cell. Helper T cells allow selection of high-affinity activated B cells and help B cells to generate an appropriate type of antibody. The B cell provides costimulatory molecules that promote cytokine production by the helper T cell. (B) The inflammatory reflex is based on innervation of a subset of helper T cells that express choline acetyltransferase. The vagus nerve relays signals to adrenergic neurons in the celiac ganglion that form neuroimmune synapses with the helper T cells. Adrenergic receptors on the T cell trigger production of acetylcholine (ACh), which interacts with cholinergic receptors on macrophages to suppress production of inflammatory cytokines such as TNF.

B cells use synapses to gather intact viral antigens from macrophages, DCs, or follicular DCs in proportion to the affinity of their antigen receptor and process the antigens to make MHC class II peptide complexes to obtain help from T cells. Obtaining T cell help is a competitive process, and B cells with the highest-affinity receptors switch to producing the IgG isotype and differentiate into antigen-secreting plasma cells with T cell help (25).

NK cells are innate immune cells that work in concert with cytotoxic T cells to defend against viruses by using inhibitory receptors that bind MHC class I antigens and host-derived or virally encoded activating receptors to control the outcome of synapse formation (26). Loss of inhibition when a virus downregulates MHC class I molecules as an evasion strategy, so called “missing-self” recognition, or increased activation due to expression of virally encoded activating ligands, will trigger the NK cells to kill (27).

The common element in all of these immune synapses is that the key triggering signals are accompanied by phosphatase exclusion from the site of interaction at a submicron scale as a means of enabling activation of kinases by the removal of an inhibitor. The submicron scale is important because it allows triggering to happen fast — in less than a second (28) — whereas large areas would require many seconds or even minutes, which is too slow to win the race with a pathogen.

Phosphatase exclusion from microclusters

Tyrosine phosphatase inhibition with chemical agents such as vanadate rapidly triggers T cell signaling, supporting the notion that tyrosine phosphatase exclusion could be used as a trigger for tyrosine kinase cascades (29, 30). Phosphatase exclusion models for immune cell triggering typically focus on the hematopoietic phosphatase CD45, which is a type I transmembrane protein with a large extracellular domain and a cytoplasmic tyrosine phosphatase domain (31, 32). TCRs and NK cells activating receptors all utilize the Src family tyrosine kinase Lck to mediate early phosphorylation events (33, 34). CD45 maintains Lck in an active state by removing a C-terminal inhibitory phosphate. However, CD45 also deactivates several targets of Lck at antigen receptors, and thus it was proposed, first as speculation by Springer (31) and later with experimental support by van der Merwe and my group (10, 35), that CD45 exclusion is a key initial event in TCR triggering. Addressing this issue at present requires the use of a reductionist model to enable sufficiently high-resolution imaging. Antibodies to the TCR complex and to CD28, a co-stimulatory receptor that is engaged by CD80 or CD86 when DCs are strongly activated by signs of infection, are very effective at activating T cells. Substrates coated with these antibodies completely exclude CD45 (36, 37), but this is not likely to be the physiological situation. Presentation of MHC-peptide ligands and the adhesion ligand ICAM-1 on supported planar bilayers activates T cells (4, 38), but accurate assessment of CD45 exclusion from TCR microclusters requires total internal reflection fluorescence microscopy (TIRFM) (10). With the use of TIRFM, it became evident that TCR microclusters exclude CD45 (10). Clusters of B cell antigen receptors (BCRs) also excluded CD45 in the same spatially restricted fashion (12). TIRFM is required for this observation because when analyzed by confocal and deconvolution microscopy, the two layers of actin-rich protrusions on flat surfaces (lamellipodia) are closely apposed, making it appear as if CD45 levels are 2-fold higher than they actually are (39). The exclusion of CD45 from Dectin-1–rich clusters in the cells phagocytosing yeast cell walls was observed by confocal microscopy (7). Dectin-1, a β-glucan receptor, has kinase recruitment motifs similar to those of the TCR and BCR. The CD45 exclusion zones in this study were defined by contacts with β-glucan–rich yeast cell walls of approximately 5 μm diameter, which generated regions of CD45 exclusion larger than 2 μm. These results are exciting and suggest a unifying mechanism for triggering synapses, but further study of how Dectin-1 forms signaling complexes using systems that enable TIRFM or super-resolution imaging methods would be of great value in more precisely determining the relationship of Dectin-1 to CD45. In contrast, neural synapses are stabilized by receptor tyrosine kinases (40, 41) but actually recruit tyrosine phosphatases into the synaptic adhesion complexes. For example, protein tyrosine phosphatase, receptor type, M (PTPRμ) undergoes homophilic interactions in the context of cadherin-dependent adhesions (42), and other members of this family undergo heterophilic interactions with synaptic adhesion molecules (43, 44). The balance of phosphatase and kinase activity may allow for the much longer lifespan of neural synapses (years) compared with immunoreceptor microclusters (minutes).

The prototypic neural synapse has a scale of approximately 0.2–0.3 μm2, which means that they have a diameter of only 0.5–0.6 μm, similar to the scale of the microclusters in immunological synapses (11). The axon-based presynaptic structure includes secretory vesicles, and such structures can be triggered by adhesion to any surface such that restricting the formation of these structures to appropriate locations may be an important process in neural development (45). Presynaptic axonal terminals and postsynaptic dendritic spines transduce action potentials, moving along the axon into a chemical signal that generates a membrane potential change in the dendritic membrane through regulation of neurotransmitter secretion that involves Ca2+-regulated snare proteins (46). In neurons, postsynaptic potentials, which can be activating or inhibitory, are integrated in the dendritic tree to generate (or not) an output action potential — effectively acting as analog-digital converters (47). Thus, in some respects, the T cell synapse, which integrates input from many microclusters, some of which may be activating and others inhibitory, is more akin to the dendritic tree of a neuron than any single neural synapse. Tetanus toxin–sensitive snare proteins deliver vesicles to the T cell synapse in response these signals (48).

Force-dependent coincidence detection in T cell synapses

In neural networks, reliability is ensured, in part, by coincidence detection (49). In the immune synapse, the exclusion of CD45 from activating receptor microclusters is a key process for signaling, but this is not sufficient. In T, B, and NK cell synapses the signaling from the early microclusters rapidly triggers an expansion of the contact area to 50–100 μm2, even in the absence of other adhesion systems (50). The first evidence that microclusters on their own are insufficient to fully activate T cells came from studies examining activation of T cells by polystyrene beads of different sizes. These studies defined a bead size threshold of over 3 μm in diameter for stimulation of cytotoxic function by purified MHC class I–peptide complexes (51). These studies are the basis for current clinical-grade culture systems for T cell expansion in adoptive immunotherapy (52, 53). One way to interpret this basic result is that CTLs require activation through at least 2 microclusters spaced a few microns apart. T cell receptor signaling is dependent on an intact f-actin cytoskeleton (54). One molecular ruler that operates on this length scale in concert with f-actin is the myosin II thick filament, which requires at least 1 μm of space between sites to generate tension (55). Myosin IIA is the major myosin II isoform in T cells, and its activity is required for full T cell signaling (56). In some contexts, externally applied forces can also be used to trigger T cell signaling (57, 58). It has been unclear why T cells would integrate mechanotransduction modules into the activation process, given that it is not obvious how innate and adaptive signals would be converted into physical forces. One way to avoid errors in activation in a system with single-molecule sensitivity is to require that that same signal be received from physically distinct points on the T cell surface at the same time to trigger a response. Thus, making part of the T cell activation process dependent upon forces exerted by myosin II ensures that at least two MHC-peptide complexes need to trigger signaling events from locations at least 1 μm apart in order to develop force. Even the most sensitive signaling processes in which MHC-peptide counting studies have been performed required at least 3 MHC-peptide complexes to sustain T cell activation (59). Thus, while innate immunity may activate phagocytosis with a single microcluster-based signal, adaptive immunity led by T cells requires multiple, spatially distinct microclusters.

Organizing information in synapses

Both the nervous system and immune system utilize several types of receptors in synapses. In the immune system there are at least 2 types of microclusters into which these receptors are distributed. Kupfer first described the bullseye pattern of the T-B synapses with a ring of LFA-1, an integrin family adhesion molecule, surrounding a central cluster of TCR (60). Parallel studies with MHC-peptide complexes and LFA-1 ligand ICAM-1 presented in a supported planar bilayer with CD2 as an early marker for TCR-rich domains demonstrated that active processes in the T cells generate the pattern (4, 61). Kupfer described the LFA-1–rich ring as a peripheral supramolecular activation cluster (pSMAC) and the central TCR-rich cluster as a central supramolecular activation cluster (cSMAC). The initial contact area is formed by a rapid, f-actin–driven spreading that is mediated by the Rac effector WAVE2 to activate the Arp2/3 complex and formins (62, 63). Cdc42 and Wiscott-Aldrich syndrome protein also play a role in this process but are not needed for this initial spreading phase (64). TIRFM on the bilayer system has revealed that the SMACs are assembled by centripetal transport of LFA-1 and TCR microclusters (10, 65). The LFA-1 microclusters may include other integrin family adhesion molecules, although this has not been extensively studied. The TCR microclusters are well established to incorporate both the CD2-CD58 adhesion system and the CD28-CD80 costimulatory pathway. Negative regulators such as CTLA4 and PD-1 may also be incorporated into these microclusters in a ligand-dependent manner. Although segregated spatially, the LFA-1/ICAM-1 interaction improves the sensitivity of the TCR for ligand by 100-fold and increases the duration of Ca2+ signaling (66–68). These two microclusters may thus work as a synergistic functional unit that would be composed of a TCR microcluster surrounded by LFA-1 microclusters. Such a radial organization may exist in neural synapse with different receptors to initiate (neurexin) and limit (polysialated NCAM) the synapse (69, 70). Synaptogenesis has been reconstituted by incorporation of neuroligin into supported planar bilayers (71), but nonspecific adhesive contacts have also been shown to trigger presynaptic structures (45). Since neural synapse survival is dependent upon electrical activity and growth factors, synapse initiation may be less dependent upon specific recognition than the immunological counterpart (72). Furthermore, activation of immunoreceptor-like tyrosine kinase cascades in neurons leads to synapse pruning (73, 74).

In the immunological synapse, the LFA-1 accumulates in a ring associated with the adapter protein talin, whereas TCR microclusters translocate through spaces in this ring to the center of the synapse. This is dependent upon TSG101, an early component in the endosomal sorting complexes required for transport (ESCRTs) (75). TSG101 recognizes receptors with mono-ubiquitin groups. The TCR is ubiquitinated by c-Cbl and Cbl-b ubiquitin ligases that are recruited and activated under stimulation with agonist MHC-peptide complexes (76, 77). In fact, the very robust tyrosine phosphorylation due to CD45 exclusion may paradoxically promote TCR ubiquitination and rapid signal termination. TCR signaling is terminated by the TSG101-dependent step, which also sorts out the CD28-CD80 interactions into a distinct signaling structure rich in PKC-θ (75, 78). Long-term maintenance of neural synapses also depends upon correct function of endosomal sorting complexes required for transports (79, 80). Indeed, mutations in these components are linked to frontotemporal dementia (81).

TCR microclusters are continuously being buffeted by centripetal actin flow and myosin IIA–dependent contractions as discussed above. Theses effects decrease the duration of the TCR–MHC-peptide interaction by 10-fold, and at the same time are required to achieve full signaling activity (56, 82). The stable immunological synapse is dependent upon a continual centripetal actin flow, and the synapse breaks and relocates whenever the symmetry of the pSMAC structure is broken (64, 83). While most of these observations have been made using the supported planar bilayer model system, there is evidence for similar events in T cell–DC synapses in vivo and in vitro (64, 84). DCs add another dimension to the T cell synapse, as the DC cytoskeleton plays an important role in T cell activation (85–87). Each element in the multifocal T cell–DC immunological synapse appears to be a SMAC-like assembly of multiple microclusters, rather than single microclusters (84, 88). The actin cytoskeleton is also critical for pathfinding in axons (89) and in the shape of dendritic spines (90).

Neuroimmune synapses and the inflammatory reflex

The “inflammatory reflex” links vagus nerve activity to inhibition of pro-inflammatory cytokine production by macrophages in the spleen (91). This is important for control of immune homeostasis and to prevent immunopathology during infection. However, such reflexes can also become dysregulated and contribute to infection following injury to the brain (92). The vagus nerve suppresses TNF-α production by spleen through acetylcholine receptors on TNF-producing cells. However, the vagus nerve connection to the spleen is via adrenergic neurons from the celiac ganglion, thus it was unclear what cell produces acetylcholine. Work from Kevin Tracey’s group determined that these adrenergic neurons synapse with choline acetyltransferase–expressing T cells in the spleen (91). Adrenergic stimulation of these T cells causes them to release acetylcholine, which then acts on nearby TNF-α–producing cells (Figure 2). These neuroimmune synapses have been documented by electron microscopy (93, 94) and the synaptic cleft is close enough, at 6 nm, to exclude CD45 and potentially induce arrest of motile T cells. In addition, neuroimmune synapses with mast cells that involve N-cadherin expression on the mast cells may be important in allergy (95). It will be interesting to evaluate the status of phosphatases in these neuroimmune synapses. Are phosphatases efficiently excluded, potentially leading to short-lived synapses due to negative feedback, or do T cells that express choline acetyltransferase also express RPTPs to engage in long-lived synapses with adrenergic termini? These are exciting therapeutic targets for inflammatory diseases and allergy.

Conclusions

Advances in the study of neural and immune synapses allow a more refined view of parallels and differences in these systems than was possible a few years ago. Recent studies of different types of immune synapses have emphasized the critical role of submicron structures more similar in scale to neural synapses. The ancestral phagocytic synapse serves as the simplest protoype. Actin-dependent immunoreceptor microclusters operate in part through a principle of receptor tyrosine phosphatase exclusion and coordination of signaling pathways by scaffold proteins. High-order integration through myosin II–dependent mechanisms verifies the presence of multiple agonist MHC-peptide complexes to improve fidelity of T cell signaling. Individual neural synapses are dependent on actin and scaffold proteins. The dendritic tree of a neuron has parallels to the immunological synapse, in that it integrates signaling from multiple submicron elements to generate a unified output. However, the much greater lifetime of neural synapses compared with immunological microclusters may require more sustainable signaling strategies that require recruitment of RPTPs, which can also contribute directly to synaptic adhesion. A better understanding of immunological and neural synapses has clear therapeutic value. The synaptic basis of neuroimmune communication is also coming into focus, and this area is particularly exciting due to the potential to execute rapid changes in immune status.

Acknowledgments

This work was supported by NIH grants R37AI543542 and PN2EY016586.

Address correspondence to: Michael Dustin, New York University School of Medicine, 540 First Avenue, SKI2-4, New York, New York 10016, USA. Phone: 212.263.3207; Fax: 212.263.5711; E-mail: michael.dustin@med.nyu.edu.

Footnotes

Conflict of interest: The author has declared that no conflict of interest exists.

Reference information: J Clin Invest. 2012;122(4):1149–1155. doi:10.1172/JCI58705.

References
  1. Dustin ML, Colman DR. Neural and immunological synaptic relations. Science. 2002;298(5594):785–789.
    View this article via: PubMed CrossRef Google Scholar
  2. Norcross MA. A synaptic basis for T-lymphocyte activation. Ann Immunol (Paris). 1984;135D(2):113–134.
    View this article via: PubMed Google Scholar
  3. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell. 1994;76(2):241–251.
    View this article via: PubMed CrossRef Google Scholar
  4. Grakoui A, et al. The immunological synapse: A molecular machine controlling T cell activation. Science. 1999;285(5425):221–227.
    View this article via: PubMed CrossRef Google Scholar
  5. Davis DM, Chiu I, Fassett M, Cohen GB, Mandelboim O, Strominger JL. The human natural killer cell immune synapse. Proc Natl Acad Sci U S A. 1999;96(26):15062–15067.
    View this article via: PubMed CrossRef Google Scholar
  6. Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells after synapse formation. Nature. 2001;411(6836):489–494.
    View this article via: PubMed CrossRef Google Scholar
  7. Goodridge HS, et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature. 2011;472(7344):471–475.
    View this article via: PubMed CrossRef Google Scholar
  8. Allen PG, Dawidowicz EA. Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J Cell Physiol. 1990;145(3):508–513.
    View this article via: PubMed CrossRef Google Scholar
  9. Wright SD, Silverstein SC. Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature. 1984;309(5966):359–361.
    View this article via: PubMed Google Scholar
  10. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity. 2006;25(1):117–127.
    View this article via: PubMed CrossRef Google Scholar
  11. Hayashi ML, et al. Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron. 2004;42(5):773–787.
    View this article via: PubMed CrossRef Google Scholar
  12. Depoil D, et al. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat Immunol. 2008;9(1):63–72.
    View this article via: PubMed CrossRef Google Scholar
  13. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–252.
    View this article via: PubMed Google Scholar
  14. Sander LE, et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature. 2011;474(7351):385–389.
    View this article via: PubMed CrossRef Google Scholar
  15. Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23:975–1028.
    View this article via: PubMed CrossRef Google Scholar
  16. Allan RS, et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 2006;25(1):153–162.
    View this article via: PubMed CrossRef Google Scholar
  17. Lindquist RL, et al. Visualizing dendritic cell networks in vivo. Nat Immunol. 2004;5(12):1243–1250.
    View this article via: PubMed CrossRef Google Scholar
  18. Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci U S A. 2004;101(4):998–1003.
    View this article via: PubMed Google Scholar
  19. Bajenoff M, et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 2006;25(6):989–1001.
    View this article via: PubMed CrossRef Google Scholar
  20. Mempel TR, Henrickson SE, Von Andrian UH. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature. 2004;427(6970):154–159.
    View this article via: PubMed Google Scholar
  21. Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature. 2002;420(6917):812–816.
    View this article via: PubMed CrossRef Google Scholar
  22. Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity. 2008;28(2):258–270.
    View this article via: PubMed Google Scholar
  23. Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001;15(5):751–761.
    View this article via: PubMed CrossRef Google Scholar
  24. Okada T, et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 2005;3(6):e150.
    View this article via: PubMed CrossRef Google Scholar
  25. Victora GD, et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell. 2010;143(4):592–605.
    View this article via: PubMed CrossRef Google Scholar
  26. Kielczewska A, et al. Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J Exp Med. 2009;206(3):515–523.
    View this article via: PubMed CrossRef Google Scholar
  27. Karre K. Natural killer cell recognition of missing self. Nat Immunol. 2008;9(5):477–480.
    View this article via: PubMed CrossRef Google Scholar
  28. Petersen NO, Elson EL. Measurements of diffusion and chemical kinetics by fluorescence photobleaching recovery and fluorescence correlation spectroscopy. Methods Enzymol. 1986;130:454–484.
    View this article via: PubMed Google Scholar
  29. Wong TW, Goldberg AR. In vitro phosphorylation of angiotensin analogs by tyrosyl protein kinases. J Biol Chem. 1983;258(2):1022–1025.
    View this article via: PubMed Google Scholar
  30. Tamura S, Brown TA, Dubler RE, Larner J. Insulin-like effect of vanadate on adipocyte glycogen synthase and on phosphorylation of 95,000 dalton subunit of insulin receptor. Biochem Biophys Res Commun. 1983;113(1):80–86.
    View this article via: PubMed CrossRef Google Scholar
  31. Springer TA. Adhesion receptors of the immune system. Nature. 1990;346(6283):425–434.
    View this article via: PubMed CrossRef Google Scholar
  32. van der Merwe PA, Davis SJ, Shaw AS, Dustin ML. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin Immunol. 2000;12(1):5–21.
    View this article via: PubMed CrossRef Google Scholar
  33. Einspahr KJ, Abraham RT, Dick CJ, Leibson PJ. Protein tyrosine phosphorylation and p56lck modification in IL-2 or phorbol ester-activated human natural killer cells. J Immunol. 1990;145(5):1490–1497.
    View this article via: PubMed Google Scholar
  34. Nika K, et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity. 2010;32(6):766–777.
    View this article via: PubMed CrossRef Google Scholar
  35. Choudhuri K, Wiseman D, Brown MH, Gould K, van der Merwe PA. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature. 2005;436(7050):578–582.
    View this article via: PubMed CrossRef Google Scholar
  36. Freiberg BA, et al. Staging and resetting T cell activation in SMACs. Nat Immunol. 2002;3(10):911–917.
    View this article via: PubMed CrossRef Google Scholar
  37. Douglass AD, Vale RD. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell. 2005;121(6):937–950.
    View this article via: PubMed CrossRef Google Scholar
  38. Johnson KG, Bromley SK, Dustin ML, Thomas ML. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc Natl Acad Sci U S A. 2000;97(18):10138–10143.
    View this article via: PubMed CrossRef Google Scholar
  39. McCann FE, et al. The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J Immunol. 2003;170(6):2862–2870.
    View this article via: PubMed Google Scholar
  40. Wu SH, Arevalo JC, Sarti F, Tessarollo L, Gan WB, Chao MV. Ankyrin repeat-rich membrane Spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo. Dev Neurobiol. 2009;69(9):547–557.
    View this article via: PubMed CrossRef Google Scholar
  41. Vicario-Abejon C, Owens D, McKay R, Segal M. Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci. 2002;3(12):965–974.
    View this article via: PubMed CrossRef Google Scholar
  42. Aricescu AR, et al. Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science. 2007;317(5842):1217–1220.
    View this article via: PubMed CrossRef Google Scholar
  43. Lim SH, et al. Synapse formation regulated by protein tyrosine phosphatase receptor T through interaction with cell adhesion molecules and Fyn. EMBO J. 2009;28(22):3564–3578.
    View this article via: PubMed CrossRef Google Scholar
  44. Bouyain S, Watkins DJ. The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci U S A. 2010;107(6):2443–2448.
    View this article via: PubMed CrossRef Google Scholar
  45. Lucido AL, et al. Rapid assembly of functional presynaptic boutons triggered by adhesive contacts. J Neurosci. 2009;29(40):12449–12466.
    View this article via: PubMed CrossRef Google Scholar
  46. Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001;2(2):98–106.
    View this article via: PubMed CrossRef Google Scholar
  47. Clark B, Hausser M. Neural coding: hybrid analog and digital signalling in axons. Curr Biol. 2006;16(15):R585–588.
    View this article via: PubMed CrossRef Google Scholar
  48. Das V, et al. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity. 2004;20(5):577–588.
    View this article via: PubMed CrossRef Google Scholar
  49. Schaefer AT, Larkum ME, Sakmann B, Roth A. Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol. 2003;89(6):3143–3154.
    View this article via: PubMed CrossRef Google Scholar
  50. Bunnell SC, Kapoor V, Trible RP, Zhang W, Samelson LE. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity. 2001;14(3):315–329.
    View this article via: PubMed Google Scholar
  51. Mescher MF. Surface contact requirements for activation of cytotoxic T lymphocytes. J Immunol. 1992;149(7):2402–2405.
    View this article via: PubMed Google Scholar
  52. Kalos M, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.
    View this article via: PubMed CrossRef Google Scholar
  53. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–733.
    View this article via: PubMed Google Scholar
  54. Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J Exp Med. 1995;181(2):577–584.
    View this article via: PubMed CrossRef Google Scholar
  55. Galbraith CG, Yamada KM, Sheetz MP. The relationship between force and focal complex development. J Cell Biol. 2002;159(4):695–705.
    View this article via: PubMed CrossRef Google Scholar
  56. Ilani T, Vasiliver-Shamis G, Vardhana S, Bretscher A, Dustin ML. T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat Immunol. 2009;10(5):531–539.
    View this article via: PubMed CrossRef Google Scholar
  57. Kim ST, et al. The alphabeta T cell receptor is an anisotropic mechanosensor. J Biol Chem. 2009;284(45):31028–31037.
    View this article via: PubMed Google Scholar
  58. Li YC, et al. Cutting Edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J Immunol. 2010;184(11):5959–5963.
    View this article via: PubMed CrossRef Google Scholar
  59. Purbhoo MA, Irvine DJ, Huppa JB, Davis MM. T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol. 2004;5(5):524–530.
    View this article via: PubMed CrossRef Google Scholar
  60. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395(6697):82–86.
    View this article via: PubMed Google Scholar
  61. Dustin ML, et al. A novel adapter protein orchestrates receptor patterning and cytoskeletal polarity in T cell contacts. Cell. 1998;94(5):667–677.
    View this article via: PubMed CrossRef Google Scholar
  62. Nolz JC, et al. The WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and CrkL-C3G-mediated activation of Rap1. J Cell Biol. 2008;182(6):1231–1244.
    View this article via: PubMed Google Scholar
  63. Nolz JC, et al. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol. 2006;16(1):24–34.
    View this article via: PubMed Google Scholar
  64. Sims TN, et al. Opposing effects of PKCtheta and WASp on symmetry breaking and relocation of the immunological synapse. Cell. 2007;129(4):773–785.
    View this article via: PubMed CrossRef Google Scholar
  65. Yokosuka T, et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol. 2005;6(12):1253–1262.
    View this article via: PubMed CrossRef Google Scholar
  66. Bachmann MF, et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity. 1997;7(4):549–557.
    View this article via: PubMed CrossRef Google Scholar
  67. Schmits R, et al. LFA-1-deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor. J Exp Med. 1996;183(4):1415–1426.
    View this article via: PubMed CrossRef Google Scholar
  68. Wulfing C, Sjaastad MD, Davis MM. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc Natl Acad Sci U S A. 1998;95(11):6302–6307.
    View this article via: PubMed CrossRef Google Scholar
  69. Seki T, Rutishauser U. Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J Neurosci. 1998;18(10):3757–3766.
    View this article via: PubMed Google Scholar
  70. Dean C, et al. Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci. 2003;6(7):708–716.
    View this article via: PubMed CrossRef Google Scholar
  71. Pautot S, Lee H, Isacoff EY, Groves JT. Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers. Nat Chem Biol. 2005;1(5):283–289.
    View this article via: PubMed CrossRef Google Scholar
  72. Boulanger LM, Poo MM. Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat Neurosci. 1999;2(4):346–351.
    View this article via: PubMed CrossRef Google Scholar
  73. Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. Functional requirement for class I MHC in CNS development and plasticity. Science. 2000;290(5499):2155–2159.
    View this article via: PubMed CrossRef Google Scholar
  74. Boulanger LM. Immune proteins in brain development and synaptic plasticity. Neuron. 2009;64(1):93–109.
    View this article via: PubMed Google Scholar
  75. Vardhana S, Choudhuri K, Varma R, Dustin ML. Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity. 2010;32(4):531–540.
    View this article via: PubMed CrossRef Google Scholar
  76. Naramura M, Jang IK, Kole H, Huang F, Haines D, Gu H. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol. 2002;3(12):1192–1199.
    View this article via: PubMed CrossRef Google Scholar
  77. Lee KH, et al. The immunological synapse balances T cell receptor signaling and degradation. Science. 2003;302(5648):1218–1222.
    View this article via: PubMed CrossRef Google Scholar
  78. Yokosuka T, et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity. 2008;29(4):589–601.
    View this article via: PubMed CrossRef Google Scholar
  79. Rodal AA, Blunk AD, Akbergenova Y, Jorquera RA, Buhl LK, Littleton JT. A presynaptic endosomal trafficking pathway controls synaptic growth signaling. J Cell Biol. 2011;193(1):201–217.
    View this article via: PubMed CrossRef Google Scholar
  80. Uytterhoeven V, Kuenen S, Kasprowicz J, Miskiewicz K, Verstreken P. Loss of skywalker reveals synaptic endosomes as sorting stations for synaptic vesicle proteins. Cell. 2011;145(1):117–132.
    View this article via: PubMed CrossRef Google Scholar
  81. Belly A, Bodon G, Blot B, Bouron A, Sadoul R, Goldberg Y. CHMP2B mutants linked to frontotemporal dementia impair maturation of dendritic spines. J Cell Sci. 2010;123(pt 17):2943–2954.
    View this article via: PubMed CrossRef Google Scholar
  82. Huppa JB, et al. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature. 2010;463(7283):963–967.
    View this article via: PubMed CrossRef Google Scholar
  83. Kaizuka Y, Douglass AD, Varma R, Dustin ML, Vale RD. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc Natl Acad Sci U S A. 2007;104(51):20296–20301.
    View this article via: PubMed CrossRef Google Scholar
  84. Tseng SY, Waite JC, Liu M, Vardhana S, Dustin ML. T cell-dendritic cell immunological synapses contain TCR-dependent CD28-CD80 clusters that recruit protein kinase Ctheta. J Immunol. 2008;181(7):4852–4863.
    View this article via: PubMed Google Scholar
  85. Al-Alwan MM, et al. Cutting edge: dendritic cell actin cytoskeletal polarization during immunological synapse formation is highly antigen-dependent. J Immunol. 2003;171(9):4479–4483.
    View this article via: PubMed Google Scholar
  86. Al-Alwan MM, Rowden G, Lee TD, West KA. The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol. 2001;166(3):1452–1456.
    View this article via: PubMed Google Scholar
  87. Benvenuti F, et al. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science. 2004;305(5687):1150–1153.
    View this article via: PubMed CrossRef Google Scholar
  88. Brossard C, et al. Multifocal structure of the T cell - dendritic cell synapse. Eur J Immunol. 2005;35(6):1741–1753.
    View this article via: PubMed Google Scholar
  89. Lin CH, Forscher P. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron. 1995;14(4):763–771.
    View this article via: PubMed CrossRef Google Scholar
  90. Korobova F, Svitkina T. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell. 2010;21(1):165–176.
    View this article via: PubMed CrossRef Google Scholar
  91. Rosas-Ballina M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.
    View this article via: PubMed CrossRef Google Scholar
  92. Wong CH, Jenne CN, Lee WY, Leger C, Kubes P. Functional innervation of hepatic iNKT cells is immuno­suppressive following stroke. Science. 2011;334(6052):101–105.
    View this article via: PubMed CrossRef Google Scholar
  93. Felten DL, et al. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol Rev. 1987;100:225–260.
    View this article via: PubMed CrossRef Google Scholar
  94. Tournier JN, Hellmann AQ. Neuro-immune connections: evidence for a neuro-immunological synapse. Trends Immunol. 2003;24(3):114–115.
    View this article via: PubMed CrossRef Google Scholar
  95. Suzuki A, Suzuki R, Furuno T, Teshima R, Nakanishi M. N-cadherin plays a role in the synapse-like structures between mast cells and neurites. Biol Pharm Bull. 2004;27(12):1891–1894.
    View this article via: PubMed CrossRef Google Scholar
Version history
  • Version 1 (April 2, 2012): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Review Series

Neuroimmunology

  • Innate immunity in the central nervous system
    Richard M. Ransohoff et al.
  • The adaptive immune system in diseases of the central nervous system
    David C. Wraith et al.
  • Multiple sclerosis
    Alyssa Nylander et al.
  • The immunology of neurodegeneration
    Eva Czirr et al.
  • Signaling at neuro/immune synapses
    Michael L. Dustin
  • Lessons learned at the intersection of immunology and neuroscience
    Lawrence Steinman

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Introduction
  • A synaptic relay race with the pathogen
  • Phosphatase exclusion from microclusters
  • Force-dependent coincidence detection in T cell synapses
  • Organizing information in synapses
  • Neuroimmune synapses and the inflammatory reflex
  • Conclusions
  • Acknowledgments
  • Footnotes
  • References
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts