Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A uroguanylin-GUCY2C endocrine axis regulates feeding in mice
Michael A. Valentino, … , Stephanie Schulz, Scott A. Waldman
Michael A. Valentino, … , Stephanie Schulz, Scott A. Waldman
Published August 25, 2011
Citation Information: J Clin Invest. 2011;121(9):3578-3588. https://doi.org/10.1172/JCI57925.
View: Text | PDF
Research Article

A uroguanylin-GUCY2C endocrine axis regulates feeding in mice

  • Text
  • PDF
Abstract

Intestinal enteroendocrine cells are critical to central regulation of caloric consumption, since they activate hypothalamic circuits that decrease appetite and thereby restrict meal size by secreting hormones in response to nutrients in the gut. Although guanylyl cyclase and downstream cGMP are essential regulators of centrally regulated feeding behavior in invertebrates, the role of this primordial signaling mechanism in mammalian appetite regulation has eluded definition. In intestinal epithelial cells, guanylyl cyclase 2C (GUCY2C) is a transmembrane receptor that makes cGMP in response to the paracrine hormones guanylin and uroguanylin, which regulate epithelial cell dynamics along the crypt-villus axis. Here, we show that silencing of GUCY2C in mice disrupts satiation, resulting in hyperphagia and subsequent obesity and metabolic syndrome. This defined an appetite-regulating uroguanylin-GUCY2C endocrine axis, which we confirmed by showing that nutrient intake induces intestinal prouroguanylin secretion into the circulation. The prohormone signal is selectively decoded in the hypothalamus by proteolytic liberation of uroguanylin, inducing GUCY2C signaling and consequent activation of downstream anorexigenic pathways. Thus, evolutionary diversification of primitive guanylyl cyclase signaling pathways allows GUCY2C to coordinate endocrine regulation of central food acquisition pathways with paracrine control of intestinal homeostasis. Moreover, the uroguanylin-GUCY2C endocrine axis may provide a therapeutic target to control appetite, obesity, and metabolic syndrome.

Authors

Michael A. Valentino, Jieru E. Lin, Adam E. Snook, Peng Li, Gilbert W. Kim, Glen Marszalowicz, Michael S. Magee, Terry Hyslop, Stephanie Schulz, Scott A. Waldman

×

Figure 5

Systemic administration of GUCY2C ligand induces satiation.

Options: View larger image (or click on image) Download as PowerPoint
Systemic administration of GUCY2C ligand induces satiation.
(A) Cumulati...
(A) Cumulative food intake of fasted Gucy2c+/+ mice orally gavaged with 1 μg ST or the inactive alanine-substituted ST analogue, TJU, and refed HCD (n = 10 per group). (B) Cumulative food intake of fasted Gucy2c+/+ mice injected i.v. with 1 μg ST or TJU and refed HCD (n = 10 per group). (C) Two-hour food intake of fasted Gucy2c+/+ and Gucy2c–/– mice injected i.v. with 1 μg TJU or ST and refed HCD (n = 10 per group). (D) Cumulative food intake of fasted Gucy2c+/+ mice injected with TJU (1 μg) or ST and refed HCD (n = 10 per group). (E) Twelve-hour food intake of nonfasted Gucy2c+/+ mice fed HCD and injected with 1 μg TJU or ST every 3 hours (n = 10 per group). (F) Two-hour food intake of fasted Gucy2c+/+ and Gucy2c–/– mice injected i.v. with TJU (1 μg) or PYY (3 μg) and refed HCD (n = 10 per group). (G) Two-hour food intake of fasted Gucy2c+/+ mice injected i.v. with TJU (1 μg), ST (1 μg), or PYY (3 μg) and refed HCD (n = 10 per group). All data are mean ± SEM. **P < 0.01, ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts