Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers
Hiromichi Ebi, … , Lewis C. Cantley, Jeffrey A. Engelman
Hiromichi Ebi, … , Lewis C. Cantley, Jeffrey A. Engelman
Published October 10, 2011
Citation Information: J Clin Invest. 2011;121(11):4311-4321. https://doi.org/10.1172/JCI57909.
View: Text | PDF
Research Article Oncology

Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers

  • Text
  • PDF
Abstract

Therapies inhibiting receptor tyrosine kinases (RTKs) are effective against some human cancers when they lead to simultaneous downregulation of PI3K/AKT and MEK/ERK signaling. However, mutant KRAS has the capacity to directly activate ERK and PI3K signaling, and this is thought to underlie the resistance of KRAS mutant cancers to RTK inhibitors. Here, we have elucidated the molecular regulation of both the PI3K/AKT and MEK/ERK signaling pathways in KRAS mutant colorectal cancer cells and identified combination therapies that lead to robust cancer cell apoptosis. KRAS knockdown using shRNA suppressed ERK signaling in all of the human KRAS mutant colorectal cancer cell lines examined. However, no decrease, and actually a modest increase, in AKT phosphorylation was often seen. By performing PI3K immunoprecipitations, we determined that RTKs, often IGF-IR, regulated PI3K signaling in the KRAS mutant cell lines. This conclusion was also supported by the observation that specific RTK inhibition led to marked suppression of PI3K signaling and biochemical assessment of patient specimens. Interestingly, combination of RTK and MEK inhibitors led to concomitant inhibition of PI3K and MEK signaling, marked growth suppression, and robust apoptosis of human KRAS mutant colorectal cancer cell lines in vitro and upon xenografting in mice. These findings provide a framework for utilizing RTK inhibitors in the treatment of KRAS mutant colorectal cancers.

Authors

Hiromichi Ebi, Ryan B. Corcoran, Anurag Singh, Zhao Chen, Youngchul Song, Eugene Lifshits, David P. Ryan, Jeffrey A. Meyerhardt, Cyril Benes, Jeffrey Settleman, Kwok-Kin Wong, Lewis C. Cantley, Jeffrey A. Engelman

×

Figure 4

Combination strategies targeting PI3K/AKT and MEK/ERK effectively lead to cell death.

Options: View larger image (or click on image) Download as PowerPoint
Combination strategies targeting PI3K/AKT and MEK/ERK effectively lead t...
(A) Cells were treated with either DMSO (–) or the indicated drug or drug combinations for 6 hours. Drugs were used at the same concentrations as in Figure 3. AZD6244 (AZD) was used at 1 μM. Protein lysates were probed with the indicated antibodies. (B) IC50 values from 72-hour Syto60 assays were determined for each KRAS mutant cancer cell line using the indicated drugs and drug combinations (raw data are shown in Supplemental Figure 9, A and B). LoVo cells were treated with PHA-665752 and AZD6244 instead of NVP-AEW541 and AZD6244. The results for each cell line are represented as individual bars. *P < 0.01 between treatment groups. (C) KRAS mutant cells were treated with the indicated drugs and combinations for 72 hours. The percentage of cells undergoing apoptosis, as measured by annexin V positivity, is shown relative to untreated cells. The average ± SD of 3 independent experiments is shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts