Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice
Markus Krohn, … , Lary C. Walker, Jens Pahnke
Markus Krohn, … , Lary C. Walker, Jens Pahnke
Published September 1, 2011
Citation Information: J Clin Invest. 2011;121(10):3924-3931. https://doi.org/10.1172/JCI57867.
View: Text | PDF
Research Article Neuroscience

Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice

  • Text
  • PDF
Abstract

In Alzheimer disease (AD), the intracerebral accumulation of amyloid-β (Aβ) peptides is a critical yet poorly understood process. Aβ clearance via the blood-brain barrier is reduced by approximately 30% in AD patients, but the underlying mechanisms remain elusive. ABC transporters have been implicated in the regulation of Aβ levels in the brain. Using a mouse model of AD in which the animals were further genetically modified to lack specific ABC transporters, here we have shown that the transporter ABCC1 has an important role in cerebral Aβ clearance and accumulation. Deficiency of ABCC1 substantially increased cerebral Aβ levels without altering the expression of most enzymes that would favor the production of Aβ from the Aβ precursor protein. In contrast, activation of ABCC1 using thiethylperazine (a drug approved by the FDA to relieve nausea and vomiting) markedly reduced Aβ load in a mouse model of AD expressing ABCC1 but not in such mice lacking ABCC1. Thus, by altering the temporal aggregation profile of Aβ, pharmacological activation of ABC transporters could impede the neurodegenerative cascade that culminates in the dementia of AD.

Authors

Markus Krohn, Cathleen Lange, Jacqueline Hofrichter, Katja Scheffler, Jan Stenzel, Johannes Steffen, Toni Schumacher, Thomas Brüning, Anne-Sophie Plath, Franziska Alfen, Anke Schmidt, Felix Winter, Katja Rateitschak, Andreas Wree, Jörg Gsponer, Lary C. Walker, Jens Pahnke

×

Figure 3

Schematic representation of the mathematical model.

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of the mathematical model.
The mathematical mod...
The mathematical model consists of 2 modules. Module 1, production of monomeric Aβ and its removal from the Aβ monomer pool. Production occurs at a constant rate, while removal of monomeric Aβ by active ABC transporters is influenced by the abundance of insoluble Aβ aggregates. Module 2, nucleation of monomeric Aβ and growth of the nuclei by addition of Aβ monomers. Both modules share the same pool of monomeric Aβ and interact via the impeding influence of insoluble aggregates considered in module 2 on the activity of the transport mechanism considered in module 1. Equations of the mathematical model are restricted to 3 basic mechanisms: (a) regulation of monomer abundance via production and removal; (b) nucleation; and (c) irreversible growth by monomer addition.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts