Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice
Shigeki Nakamura, … , Kimberly M. Davis, Jeffrey N. Weiser
Shigeki Nakamura, … , Kimberly M. Davis, Jeffrey N. Weiser
Published August 15, 2011
Citation Information: J Clin Invest. 2011;121(9):3657-3665. https://doi.org/10.1172/JCI57762.
View: Text | PDF
Research Article

Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice

  • Text
  • PDF
Abstract

Pneumococcal infection of the respiratory tract is often secondary to recent influenza virus infection and accounts for much of the morbidity and mortality during seasonal and pandemic influenza. Here, we show that coinfection of the upper respiratory tract of mice with influenza virus and pneumococcus leads to synergistic stimulation of type I IFNs and that this impairs the recruitment of macrophages, which are required for pneumococcal clearance, due to decreased production of the chemokine CCL2. Type I IFN expression was induced by pneumococcal colonization alone. Colonization followed by influenza coinfection led to a synergistic type I IFN response, resulting in increased density of colonizing bacteria and susceptibility to invasive infection. This enhanced type I IFN response inhibited production of the chemokine CCL2, which promotes the recruitment of macrophages and bacterial clearance. Stimulation of CCL2 by macrophages upon pneumococcal infection alone required the pattern recognition receptor Nod2 and expression of the pore-forming toxin pneumolysin. Indeed, the increased colonization associated with concurrent influenza virus infection was not observed in mice lacking Nod2 or the type I IFN receptor, or in mice challenged with pneumococci lacking pneumolysin. We therefore propose that the synergistic stimulation of type I IFN production during concurrent influenza virus and pneumococcal infection leads to increased bacterial colonization and suggest that this may contribute to the higher rates of disease associated with coinfection in humans.

Authors

Shigeki Nakamura, Kimberly M. Davis, Jeffrey N. Weiser

×

Figure 6

IFN-β inhibits production of CCL2 in peritoneal macrophage stimulated with heat-killed S. pneumoniae.

Options: View larger image (or click on image) Download as PowerPoint
IFN-β inhibits production of CCL2 in peritoneal macrophage stimulated wi...
(A) Effect of treatment of peritoneal macrophages with poly-ICLC or IFN-β prior to stimulation with heat-killed strain P1121 on CCL2 production in culture supernatants as assessed by ELISA. (B) Levels of Ccl2 mRNA expression in P1121-stimulated peritoneal macrophages with the pretreatment indicated as analyzed by qRT-PCR. (C) Luciferase assay comparing NF-κB activity in Nod2-expressing 293T cells treated with MDP with or without pretreatment with poly-ICLC or IFN-β. Values are relative to empty vector controls and expressed as mean ± SD. *P < 0.05, **P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts