Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Creatine kinase–mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved
Ashish Gupta, … , Gary Gerstenblith, Robert G. Weiss
Ashish Gupta, … , Gary Gerstenblith, Robert G. Weiss
Published December 27, 2011
Citation Information: J Clin Invest. 2012;122(1):291-302. https://doi.org/10.1172/JCI57426.
View: Text | PDF
Research Article Cardiology

Creatine kinase–mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved

  • Text
  • PDF
Abstract

ATP is required for normal cardiac contractile function, and it has long been hypothesized that reduced energy delivery contributes to the contractile dysfunction of heart failure (HF). Despite experimental and clinical HF data showing reduced metabolism through cardiac creatine kinase (CK), the major myocardial energy reserve and temporal ATP buffer, a causal relationship between reduced ATP-CK metabolism and contractile dysfunction in HF has never been demonstrated. Here, we generated mice conditionally overexpressing the myofibrillar isoform of CK (CK-M) to test the hypothesis that augmenting impaired CK-related energy metabolism improves contractile function in HF. CK-M overexpression significantly increased ATP flux through CK ex vivo and in vivo but did not alter contractile function in normal mice. It also led to significantly increased contractile function at baseline and during adrenergic stimulation and increased survival after thoracic aortic constriction (TAC) surgery–induced HF. Withdrawal of CK-M overexpression after TAC resulted in a significant decline in contractile function as compared with animals in which CK-M overexpression was maintained. These observations provide direct evidence that the failing heart is “energy starved” as it relates to CK. In addition, these data identify CK as a promising therapeutic target for preventing and treating HF and possibly diseases involving energy-dependent dysfunction in other organs with temporally varying energy demands.

Authors

Ashish Gupta, Ashwin Akki, Yibin Wang, Michelle K. Leppo, V.P. Chacko, D. Brian Foster, Viviane Caceres, Sa Shi, Jonathan A. Kirk, Jason Su, Shenghan Lai, Nazareno Paolocci, Charles Steenbergen, Gary Gerstenblith, Robert G. Weiss

×

Figure 8

In vivo determination of ATP synthesis rates through CK in the mouse heart.

Options: View larger image (or click on image) Download as PowerPoint
In vivo determination of ATP synthesis rates through CK in the mouse hea...
(A) Typical transverse 1H MR image of a mouse at the mid-LV with the nominal location of 31P MR cardiac voxel denoted between the white lines. (B) 31P MR spectrum with control saturation and TR = 10 seconds and NEX = 16. (C) Spectrum with γ-phosphate of ATP saturated with TR = 6 seconds, NEX = 32. (D) Spectrum with γ-phosphate of ATP saturation with TR = 1.5 seconds, NEX = 96. β-ATP; β-phosphate of ATP. (E–I) Summary of in vivo energetics (mean + SD) for control no-TAC (Control, n = 11), control with TAC (Control TAC, n = 10), CK-M overexpressors no-TAC (Overexp, n = 8), and CK-M overexpressors with TAC (Overexp TAC, n = 7) mice. (E) PCr/ATP ratio. (F) PCr concentration (μmol/g wet weight). (G) ATP concentration (μmol/g wet weight). (H) CK forward pseudo-first-order rate constant (kf, s–1). (I) rate of ATP synthesis through CK (CK flux, μmol/g/s). Some of the data in control mice, but not CK-M overexpressers, were previously reported (12). *P < 0.05, **P < 0.01, ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts