Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages
Amir Kol, … , Andrew H. Lichtman, Peter Libby
Amir Kol, … , Andrew H. Lichtman, Peter Libby
Published February 15, 1999
Citation Information: J Clin Invest. 1999;103(4):571-577. https://doi.org/10.1172/JCI5310.
View: Text | PDF
Article

Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages

  • Text
  • PDF
Abstract

Both chlamydial and human heat shock protein 60s (HSP 60), which colocalize in human atheroma, may contribute to inflammation during atherogenesis. We tested the hypothesis that chlamydial or human HSP 60 activates human endothelial cells (ECs), smooth muscle cells (SMCs), and monocyte-derived macrophages. We examined the expression of adhesion molecules such as endothelial-leukocyte adhesion molecule-1 (E-selectin), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), and the production of the proinflammatory cytokine interleukin-6 (IL-6). We also tested whether either HSP 60 induces nuclear factor-κB (NF-κB), which contributes to the gene expression of these molecules. Either chlamydial or human HSP 60 induced E-selectin, ICAM-1, and VCAM-1 expression on ECs similar to levels induced by Escherichia coli lipopolysaccharide (LPS). Each HSP 60 also significantly induced IL-6 production by ECs, SMCs, and macrophages to an extent similar to that induced by E. coli LPS, as assessed by enzyme-linked immunosorbent assay (ELISA). In ECs, either HSP 60 triggered activation of NF-κB complexes containing p65 and p50 Rel proteins. Heat treatment abolished all these effects, but did not alter the ability of E. coli LPS to induce these functions. Chlamydial and human HSP 60s therefore activate human vascular cell functions relevant to atherogenesis and lesional complications. These findings help to elucidate the mechanisms by which a chronic asymptomatic chlamydial infection might contribute to the pathophysiology of atheroma.

Authors

Amir Kol, Todd Bourcier, Andrew H. Lichtman, Peter Libby

×

Figure 8

Options: View larger image (or click on image) Download as PowerPoint
Human HSP 60 induces NF-κB activation: specificity of DNA-binding comple...
Human HSP 60 induces NF-κB activation: specificity of DNA-binding complexes. Endothelial cells were incubated with medium only (unstimulated control), or with human HSP 60 (2 μg/ml) for 2 h. Nuclear extracts were prepared and subject to electromobility shift assay with an oligonucleotide containing the NF-κB–binding site of the IL-6 promoter. Competition of DNA-binding activity in the presence of excess unlabeled competitor, consensus, or mutant NF-κB oligonucleotides demonstrate specificity of HSP 60–induced NF-κB DNA-binding complexes.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts