Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Differential regulation of inotropy and lusitropy in overexpressed Gsα myocytes through cAMP and Ca2+ channel pathways
Song-Jung Kim, … , Charles J. Homcy, Stephen F. Vatner
Song-Jung Kim, … , Charles J. Homcy, Stephen F. Vatner
Published April 1, 1999
Citation Information: J Clin Invest. 1999;103(7):1089-1097. https://doi.org/10.1172/JCI4848.
View: Text | PDF
Article

Differential regulation of inotropy and lusitropy in overexpressed Gsα myocytes through cAMP and Ca2+ channel pathways

  • Text
  • PDF
Abstract

We investigated the mechanisms responsible for altered contractile and relaxation function in overexpressed Gsα myocytes. Although baseline contractile function (percent contraction) in Gsα mice was similar to that of wild-type (WT) mice, left ventricular myocyte contraction, fura-2 Ca2+transients, and Ca2+ channel currents (ICa) were greater in Gsα mice in response to 10–8 M isoproterenol (ISO) compared with WT mice. The late phase of relaxation of the isolated myocytes and fura-2 Ca2+ transients was accelerated at baseline in Gsα but did not increase further with ISO. In vivo measurements using echocardiography also demonstrated enhanced relaxation at baseline in Gsα mice. Forskolin and CaCl2 increased contraction similarly in WT and Gsα mice. Rp-cAMP, an inhibitor of protein kinase, blocked the increases in contractile response and Ca2+ currents to ISO in WT and to forskolin in both WT and Gsα. It also blocked the accelerated relaxation in Gsα at baseline but not the contractile response to ISO in Gsα myocytes. Baseline measurements of cAMP and phospholambation phosphorylation were enhanced in Gsα compared with WT. These data indicate that overexpression of Gsα accelerates relaxation at end diastolic but does not affect baseline systolic function in isolated myocytes. However, the enhanced responses to sympathetic stimulation partly reflect increased Ca2+ channel activity; i.e the cellular mechanisms mediating these effects appear to involve a cAMP-independent as well as a cAMP-dependent pathway.

Authors

Song-Jung Kim, Atsuko Yatani, Dorothy E. Vatner, Satoshi Yamamoto, Yoshihiro Ishikawa, Thomas E. Wagner, Richard P. Shannon, Young-Kwon Kim, Gen Takagi, Kuniya Asai, Charles J. Homcy, Stephen F. Vatner

×

Figure 7

Options: View larger image (or click on image) Download as PowerPoint
Representative ICa recordings in WT (a) and Gsα (b) mice. Currents were ...
Representative ICa recordings in WT (a) and Gsα (b) mice. Currents were elicited from a holding potential of –50mV to the indicated test potentials. (c) A comparison of the current–voltage relationships in WT and Gsa mice. ICa was normalized to the cell capacitance to give current densities (pA/pF). Average peak ICa densities for WT and Gsα mice were 8.4 ± 0.5 (pA/pF) and 6.6 ± 0.3 (pA/pF), respectively. Numbers correspond to number of cells. ICa, Ca2+ channel currents.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts