Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase
Olivier Feron, … , Jean-Pierre Desager, Jean-Luc Balligand
Olivier Feron, … , Jean-Pierre Desager, Jean-Luc Balligand
Published March 15, 1999
Citation Information: J Clin Invest. 1999;103(6):897-905. https://doi.org/10.1172/JCI4829.
View: Text | PDF
Article

Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase

  • Text
  • PDF
Abstract

Hypercholesterolemia is a central pathogenic factor of endothelial dysfunction caused in part by an impairment of endothelial nitric oxide (NO) production through mechanisms that remain poorly characterized. The activity of the endothelial isoform of NO synthase (eNOS) was recently shown to be modulated by its reciprocal interactions with the stimulatory Ca2+–calmodulin complex and the inhibitory protein caveolin. We examined whether hypercholesterolemia may reduce NO production through alteration of this regulatory equilibrium. Bovine aortic endothelial cells were cultured in the presence of serum obtained from normocholesterolemic (NC) or hypercholesterolemic (HC) human volunteers. Exposure of endothelial cells to the HC serum upregulated caveolin abundance without any measurable effect on eNOS protein levels. This effect of HC serum was associated with an impairment of basal NO release paralleled by an increase in inhibitory caveolin–eNOS complex formation. Similar treatment with HC serum significantly attenuated the NO production stimulated by the calcium ionophore A23187. Accordingly, higher calmodulin levels were required to disrupt the enhanced caveolin–eNOS heterocomplex from HC serum–treated cells. Finally, cell exposure to the low-density lipoprotein (LDL) fraction alone dose-dependently reproduced the inhibition of basal and stimulated NO release, as well as the upregulation of caveolin expression and its heterocomplex formation with eNOS, which were unaffected by cotreatment with antioxidants. Together, our data establish a new mechanism for the cholesterol-induced impairment of NO production through the modulation of caveolin abundance in endothelial cells, a mechanism that may participate in the pathogenesis of endothelial dysfunction and the proatherogenic effects of hypercholesterolemia.

Authors

Olivier Feron, Chantal Dessy, Stephane Moniotte, Jean-Pierre Desager, Jean-Luc Balligand

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Release of eNOS from the caveolin immune complex by Ca2+–CaM. Endothelia...
Release of eNOS from the caveolin immune complex by Ca2+–CaM. Endothelial cells exposed for 48 h to 50% normocholesterolemic (NC) or hypercholesterolemic (HC) human serum were collected, lysed, and solubilized as described in the text. (a) A bar graph (mean ± SEM, n = 3) illustrating the maximal eNOS enzyme activity, measured by the conversion of [3H]arginine in [3H]citrulline in the corresponding cell extracts immunoprecipitated with anti–caveolin-1 antibody. The data are expressed as percent of total eNOS activity in the immunoprecipitate obtained from cells exposed to NC serum. (b) Immunoblot with an anti-eNOS antibody of the same extracts immunoprecipitated with anti–caveolin-1 antibody and exposed, in presence of Ca2+, to increasing concentrations of exogenous CaM: 0, 0.1, 1, 10, 100 μg/ml. The immune complexes bound to protein G–Sepharose beads were extensively washed in OG buffer, and the beads were then equally distributed in five separate aliquots. After 1 h incubation at 4°C in the presence of the indicated amounts of CaM, the beads were repelleted, the supernatant discarded, and the immune complex processed for SDS-PAGE and immunoblot analysis. These experiments were performed three times with similar results. CaM, calmodulin; OG, octylglucoside.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts