Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients
Geok Choo Sim, … , Patrick Hwu, Laszlo Radvanyi
Geok Choo Sim, … , Patrick Hwu, Laszlo Radvanyi
Published December 2, 2013
Citation Information: J Clin Invest. 2014;124(1):99-110. https://doi.org/10.1172/JCI46266.
View: Text | PDF
Research Article Immunology

IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients

  • Text
  • PDF
Abstract

High-dose (HD) IL-2 therapy in patients with cancer increases the general population of Tregs, which are positive for CD4, CD25, and the Treg-specific marker Foxp3. It is unknown whether specific subsets of Tregs are activated and expanded during HD IL-2 therapy or whether activation of any particular Treg subset correlates with clinical outcome. Here, we evaluated Treg population subsets that were induced in patients with melanoma following HD IL-2 therapy. We identified a Treg population that was positive for CD4, CD25, Foxp3, and the inducible T cell costimulator (ICOS). This Treg population increased more than any other lymphocyte subset during HD IL-2 therapy and had an activated Treg phenotype, as indicated by high levels of CD39, CD73, and TGF-β. ICOS+ Tregs were the most proliferative lymphocyte population in the blood after IL-2 therapy. Patients with melanoma with enhanced expansion of ICOS+ Tregs in blood following the first cycle of HD IL-2 therapy had worse clinical outcomes than patients with fewer ICOS+ Tregs. However, there was no difference in total Treg expansion between HD IL-2 responders and nonresponders. These data suggest that increased expansion of the ICOS+ Treg population following the first cycle of HD IL-2 therapy may be predictive of clinical outcome.

Authors

Geok Choo Sim, Natalia Martin-Orozco, Lei Jin, Yan Yang, Sheng Wu, Edwina Washington, Deborah Sanders, Carol Lacey, Yijun Wang, Luis Vence, Patrick Hwu, Laszlo Radvanyi

×

Figure 1

CD4+ T cells expressing ICOS with phenotypic characteristics of Tregs increase the most in peripheral blood after HD IL-2 therapy.

Options: View larger image (or click on image) Download as PowerPoint
CD4+ T cells expressing ICOS with phenotypic characteristics of Tregs in...
PBMCs isolated at baseline and 2 days after the last dose of IL-2 during cycle 1 of HD IL-2 therapy from 9 patients (nonresponders) were stained for multiple T, B, and NK cell and DC markers. The percentage of 46 cell subsets in the live lymphocyte gate were determined, and the fold change in the frequency of each indicated cell subset in the lymphocyte gate was calculated by dividing the frequency of cells before HD IL-2 therapy by the frequency after treatment. (A) Changes in the percentage of indicated cell subsets analyzed for all 9 patients (patient numbers are shown at the top of the heat map) were heat mapped based on the fold changes, with the use of an Excel conditional formatting program, as indicated at the bottom of the figure. The major lymphocyte subpopulations corresponding to the different phenotypic marker subsets (left side) are indicated on the right side of the heat diagram. (B) Total numbers of CD4+ICOS+, CD4+CD25+ICOS+, and CD4+CD25+Foxp3+ICOS+ cells before IL-2 and 2 days after cycle 1 of HD IL-2 therapy (after IL-2) are shown for these 9 patients. Total cell numbers were calculated by multiplying the percentage of each subset in the viable lymphocyte gate by the absolute lymphocyte count. Horizontal bars represent median values. Statistical analyses were performed with 2-tailed Wilcoxon matched paired test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts