Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers
James L. LaBelle, … , Andrew L. Kung, Loren D. Walensky
James L. LaBelle, … , Andrew L. Kung, Loren D. Walensky
Published May 24, 2012
Citation Information: J Clin Invest. 2012;122(6):2018-2031. https://doi.org/10.1172/JCI46231.
View: Text | PDF
Research Article

A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers

  • Text
  • PDF
Abstract

Cancer cells subvert the natural balance between cellular life and death, achieving immortality through pathologic enforcement of survival pathways and blockade of cell death mechanisms. Pro-apoptotic BCL-2 family proteins are frequently disarmed in relapsed and refractory cancer through genetic deletion or interaction-based neutralization by overexpressed antiapoptotic proteins, resulting in resistance to chemotherapy and radiation treatments. New pharmacologic strategies are urgently needed to overcome these formidable apoptotic blockades. We harnessed the natural killing activity of BCL-2–interacting mediator of cell death (BIM), which contains one of the most potent BH3 death domains of the BCL-2 protein family, to restore BH3-dependent cell death in resistant hematologic cancers. A hydrocarbon-stapled peptide modeled after the BIM BH3 helix broadly targeted BCL-2 family proteins with high affinity, blocked inhibitory antiapoptotic interactions, directly triggered proapoptotic activity, and induced dose-responsive and BH3 sequence–specific cell death of hematologic cancer cells. The therapeutic potential of stapled BIM BH3 was highlighted by the selective activation of cell death in the aberrant lymphoid infiltrates of mice reconstituted with BIM-deficient bone marrow and in a human AML xenograft model. Thus, we found that broad and multimodal targeting of the BCL-2 family pathway can overcome pathologic barriers to cell death.

Authors

James L. LaBelle, Samuel G. Katz, Gregory H. Bird, Evripidis Gavathiotis, Michelle L. Stewart, Chelsea Lawrence, Jill K. Fisher, Marina Godes, Kenneth Pitter, Andrew L. Kung, Loren D. Walensky

×

Figure 2

BIM SAHBA dissociates inhibitory antiapoptotic interactions and directly triggers BAX/BAK-dependent mitochondrial cytochrome c release.

Options: View larger image (or click on image) Download as PowerPoint
BIM SAHBA dissociates inhibitory antiapoptotic interactions and directly...
(A and B) The antiapoptotic proteins BCL-XLΔC and MCL-1ΔNΔC, respectively, sequester the proapoptotic BH3 helices of BAX and BAK in high-affinity complexes. (C and D) BIM SAHBA effectively dissociates the inhibitory complexes, whereas R153D mutagenesis markedly impairs competitive binding. (E) BAX/BAK-deficient MLM (mouse liver mitochondria) undergo cytochrome c release in response to combination treatment with recombinant BAX (50 nM) and increasing doses of BIM SAHBA. The specificity of action is highlighted by (a) blockade of the effect by added recombinant BCL-XLΔC (2 μM), (b) loss of activity upon R153D mutagenesis, and (c) the inability of BAX and BIM SAHBAs to influence cytochrome c release when administered as single agents. (F) To monitor BAK-dependent cytochrome c release, WT MLM that contain native BAK were exposed to BIM SAHBA and its R153D mutant. BIM SAHBA triggered BH3 sequence–dependent and BAK-dependent cytochrome c release, with little to no effect on the corresponding BAX/BAK-deficient MLM in the 0–200 nM dosing range. Data are mean ± SEM for experiments performed at least in triplicate.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts