Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice
Mitsuteru Akahoshi, … , Mindy Tsai, Stephen J. Galli
Mitsuteru Akahoshi, … , Mindy Tsai, Stephen J. Galli
Published September 19, 2011
Citation Information: J Clin Invest. 2011;121(10):4180-4191. https://doi.org/10.1172/JCI46139.
View: Text | PDF
Research Article Immunology

Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice

  • Text
  • PDF
Abstract

Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function.

Authors

Mitsuteru Akahoshi, Chang Ho Song, Adrian M. Piliponsky, Martin Metz, Andrew Guzzetta, Magnus Åbrink, Susan M. Schlenner, Thorsten B. Feyerabend, Hans-Reimer Rodewald, Gunnar Pejler, Mindy Tsai, Stephen J. Galli

×

Figure 4

Helodermin (Helo) and VIP can activate mast cells at least partly through VIP receptors.

Options: View larger image (or click on image) Download as PowerPoint
Helodermin (Helo) and VIP can activate mast cells at least partly throug...
Purified PMCs from WT or Mcpt4–/– mice were incubated with vehicle (Tyrode’s buffer) alone or with the indicated concentrations of helodermin (A), VIP (B), or A23187 calcium ionophore (A23187) (A and B) for 30 minutes at 37°C. Some cells were pretreated with the VIP receptor antagonist VIP6–28. *P < 0.05; **P < 0.01; ***P < 0.001; NS (P > 0.05) for the comparison shown. Each panel shows data pooled from the 4 or more independent experiments we performed, each of which gave similar results (in A and B, n = 4–14 determinations per group). Data are presented as mean + SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts