Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
FGF23 induces left ventricular hypertrophy
Christian Faul, … , Martin G. Keane, Myles Wolf
Christian Faul, … , Martin G. Keane, Myles Wolf
Published October 10, 2011
Citation Information: J Clin Invest. 2011;121(11):4393-4408. https://doi.org/10.1172/JCI46122.
View: Text | PDF
Research Article Nephrology

FGF23 induces left ventricular hypertrophy

  • Text
  • PDF
Abstract

Chronic kidney disease (CKD) is a public health epidemic that increases risk of death due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiovascular disease in individuals with CKD. Elevated levels of FGF23 have been linked to greater risks of LVH and mortality in patients with CKD, but whether these risks represent causal effects of FGF23 is unknown. Here, we report that elevated FGF23 levels are independently associated with LVH in a large, racially diverse CKD cohort. FGF23 caused pathological hypertrophy of isolated rat cardiomyocytes via FGF receptor–dependent activation of the calcineurin-NFAT signaling pathway, but this effect was independent of klotho, the coreceptor for FGF23 in the kidney and parathyroid glands. Intramyocardial or intravenous injection of FGF23 in wild-type mice resulted in LVH, and klotho-deficient mice demonstrated elevated FGF23 levels and LVH. In an established animal model of CKD, treatment with an FGF–receptor blocker attenuated LVH, although no change in blood pressure was observed. These results unveil a klotho-independent, causal role for FGF23 in the pathogenesis of LVH and suggest that chronically elevated FGF23 levels contribute directly to high rates of LVH and mortality in individuals with CKD.

Authors

Christian Faul, Ansel P. Amaral, Behzad Oskouei, Ming-Chang Hu, Alexis Sloan, Tamara Isakova, Orlando M. Gutiérrez, Robier Aguillon-Prada, Joy Lincoln, Joshua M. Hare, Peter Mundel, Azorides Morales, Julia Scialla, Michael Fischer, Elsayed Z. Soliman, Jing Chen, Alan S. Go, Sylvia E. Rosas, Lisa Nessel, Raymond R. Townsend, Harold I. Feldman, Martin St. John Sutton, Akinlolu Ojo, Crystal Gadegbeku, Giovana Seno Di Marco, Stefan Reuter, Dominik Kentrup, Klaus Tiemann, Marcus Brand, Joseph A. Hill, Orson W. Moe, Makoto Kuro-o, John W. Kusek, Martin G. Keane, Myles Wolf

×

Figure 7

Pharmacological inhibition of FGFR attenuates LVH in an animal model of CKD.

Options: View larger image (or click on image) Download as PowerPoint
Pharmacological inhibition of FGFR attenuates LVH in an animal model of ...
(A) PD173074 attenuates the increases in left ventricular mass (by echocardiography) and cardiac weight/body weight that develop in 5/6 nephrectomized rats treated with vehicle (*P < 0.05, compared with sham; **P < 0.05, compared with 5/6 nephrectomy treated with vehicle). (B) Representative gross pathology sections (hematoxylin and eosin stain; original magnification, ×2.5; scale bar: 400 μm), M-mode echocardiography images, and WGA-stained sections (original magnification, ×63; scale bar: 50 μm) from the left ventricular mid-chamber at day 14 after 5/6 nephrectomy demonstrate that PD173074 attenuates LVH compared with vehicle. (C) PD173074 attenuates the effects of 5/6 nephrectomy to increase left ventricular anterior wall thickness and relative wall thickness (by gross pathology), to increase cross-sectional surface area of individual cardiomyocytes (by WGA staining), and to decrease ejection fraction and LV end diastolic volume (by echocardiogram; *P < 0.05, compared with sham; **P < 0.05, compared with 5/6 nephrectomy treated with vehicle). All values are mean ± SEM (n = 6 rats per group).

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts