Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Growing a tumor stroma: a role for granulin and the bone marrow
Andrew Bateman
Andrew Bateman
Published January 25, 2011
Citation Information: J Clin Invest. 2011;121(2):516-519. https://doi.org/10.1172/JCI46088.
View: Text | PDF
Commentary

Growing a tumor stroma: a role for granulin and the bone marrow

  • Text
  • PDF
Abstract

The tumor stroma is critical in cancer progression; understanding its formation is therefore important biologically and therapeutically. In this issue of the JCI, Elkabets et al. report on the generation of data in mice that lead them to propose that certain tumors can stimulate the growth of a second otherwise quiescent or indolent tumor in the same animal by stimulating stromal formation. Granulin-expressing Sca+Kit– hematopoietic progenitor cells in the bone marrow of the tumor host were required to mediate this effect. These data shed new light on the importance of the bone marrow in tumor growth and the role of granulin in carcinogenesis.

Authors

Andrew Bateman

×

Figure 1

The role of GRN+Sca-1+cKit– BMCs in systemic instigation and the formation of tumor stroma.

Options: View larger image (or click on image) Download as PowerPoint
The role of GRN+Sca-1+cKit– BMCs in systemic instigation and the formati...
Cells from an aggressively growing primary tumor, the instigator, secrete the circulating signal osteopontin. This mobilizes a population of Sca-1+cKit– BM progenitor cells that express high levels of the secreted glycoprotein GRN. The GRN+Sca-1+cKit– BMCs travel to the site of inoculation of a second cancer cell type, the responder, that grows poorly in mice. GRN+Sca-1+cKit– cells enhance the assembly of the tumor stoma by stimulating the differentiation of fibroblasts into αSMA-expressing myofibroblasts. The stroma, in turn, supports the successful growth of the otherwise quiescent or indolent responder cells, resulting in a proliferating stroma-rich carcinoma outgrowth (7). The process whereby an aggressive primary tumor promotes the outgrowth of another otherwise indolent tumor is called systemic instigation. Interrupting the paracrine GRN signal during systemic instigation or preventing the mobilization of the GRN+Sca-1+cKit– BMCs might prove therapeutically useful in preventing the formation of reactive tumor stroma, thereby inhibiting tumor progression (7). The role of GRN+Sca-1+cKit– BMCs as local regulators of tumor progression is compared to other proposed mechanisms of BM/tumor interaction. For example, the BM may provide progenitor cells directly; in the example shown, tumor fibroblasts secrete stromal-derived factor-1 (SDF), which mobilizes endothelial progenitor cells (EPC). These contribute to angiogenesis (16). Other hematopoietic progenitors, for example VEGFR1+ cells, may assist in the creation of prometastatic niches (17).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts