Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice
Domenico Migliorini, … , William C. Skarnes, Jean-Christophe Marine
Domenico Migliorini, … , William C. Skarnes, Jean-Christophe Marine
Published March 14, 2011
Citation Information: J Clin Invest. 2011;121(4):1329-1343. https://doi.org/10.1172/JCI45784.
View: Text | PDF
Research Article

Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice

  • Text
  • PDF
Abstract

Biochemical studies have suggested conflicting roles for the E3 ubiquitin ligase constitutive photomorphogenesis protein 1 (Cop1; also known as Rfwd2) in tumorigenesis, providing evidence for both the oncoprotein c-Jun and the tumor suppressor p53 as its targets. Here we present what we believe to be the first in vivo investigation of the role of Cop1 in cancer etiology. Using an innovative genetic approach to generate an allelic series of Cop1, we found that Cop1 hypomorphic mice spontaneously developed malignancy at a high frequency in the first year of life and were highly susceptible to radiation-induced lymphomagenesis. Further analysis revealed that c-Jun was a key physiological target for Cop1 and that Cop1 constitutively kept c-Jun at low levels in vivo and thereby modulated c-Jun/AP-1 transcriptional activity. Importantly, Cop1 deficiency stimulated cell proliferation in a c-Jun–dependent manner. Focal deletions of COP1 were observed at significant frequency across several cancer types, and COP1 loss was determined to be one of the mechanisms leading to c-Jun upregulation in human cancer. We therefore conclude that Cop1 is a tumor suppressor that functions, at least in part, by antagonizing c-Jun oncogenic activity. In the absence of evidence for a genetic interaction between Cop1 and p53, our data strongly argue against the use of Cop1-inhibitory drugs for cancer therapy.

Authors

Domenico Migliorini, Sven Bogaerts, Dieter Defever, Rajesh Vyas, Geertrui Denecker, Enrico Radaelli, Aleksandra Zwolinska, Vanessa Depaepe, Tino Hochepied, William C. Skarnes, Jean-Christophe Marine

×

Figure 3

Cop1 modulates AP-1 activity in vivo.

Options: View larger image (or click on image) Download as PowerPoint
Cop1 modulates AP-1 activity in vivo.
(A–C) MEFs were exposed to 30 J/m2...
(A–C) MEFs were exposed to 30 J/m2 irradiation. (A) Comparison of AP-1–dependent luciferase activity in Cop1+/+ and Cop1hypo/– MEFs. The data represent the mean ± SD of 3 independent experiments. (B) Samples were analyzed by Western blotting. (C) Transcriptional analysis of c-Jun target genes by Q-RT-PCR analyses. The data were normalized to the level of expression in nontreated control, which is set to 1. The data represent the mean ± SD of 3 independent experiments. (D) Western blot analysis of early-passage MEFs. (E) Transcriptional analysis of c-Jun target genes by Q-RT-PCR analyses in p53-deficient MEFs. The data were normalized to the level of expression in control MEFs, which is set to 1. The data represent the mean ± SD of 2 independent experiments. (F) Comparison of AP-1–dependent luciferase activity in different organs from P6 Cop1hypo/+ and Cop1hypo/hypo mice. The data were first normalized to the total protein levels and then to the luciferase activity observed in Cop1hypo/+ mice, which is set to 1. The data represent the mean ± SD of 4 independent biological replicates. (G) Comparison of AP-1–dependent luciferase activity in skin from P6 Cop1hypo/+ and Cop1hypo/hypo mice exposed to UV-B irradiation (750 mJ/cm2). The data were normalized first to the total protein levels and then to the luciferase activity observed in Cop1hypo/+ mice, which is set to 1. The data represent the mean ± SD of 4 independent biological replicates. (H) Immunohistochemistry for phosphorylated (Ser63) c-Jun on skin sections from P6 Cop1+/+ and Cop1hypo/hypo mice. Mice were either nontreated (NT) or exposed to UV-B irradiation. Original magnification, ×20.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts