Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8–mediated activation of TGF-β
Hideya Kitamura, … , Jody Lynn Baron, Stephen L. Nishimura
Hideya Kitamura, … , Jody Lynn Baron, Stephen L. Nishimura
Published June 6, 2011
Citation Information: J Clin Invest. 2011;121(7):2863-2875. https://doi.org/10.1172/JCI45589.
View: Text | PDF
Research Article Pulmonology

Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8–mediated activation of TGF-β

  • Text
  • PDF
Abstract

The airway is a primary portal of entry for noxious environmental stimuli that can trigger airway remodeling, which contributes significantly to airway obstruction in chronic obstructive pulmonary disease (COPD) and chronic asthma. Important pathologic components of airway remodeling include fibrosis and abnormal innate and adaptive immune responses. The positioning of fibroblasts in interstitial spaces suggests that they could participate in both fibrosis and chemokine regulation of the trafficking of immune cells such as dendritic cells, which are crucial antigen-presenting cells. However, physiological evidence for this dual role for fibroblasts is lacking. Here, in two physiologically relevant models — conditional deletion in mouse fibroblasts of the TGF-β–activating integrin αvβ8 and neutralization of αvβ8 in human COPD fibroblasts — we have elucidated a mechanism whereby lung fibroblast chemokine secretion directs dendritic cell trafficking, in a manner that is critically dependent on αvβ8-mediated activation of TGF-β by fibroblasts. Our data therefore indicate that fibroblasts have a crucial role in regulating both fibrotic and immune responses in the lung.

Authors

Hideya Kitamura, Stephanie Cambier, Sangeeta Somanath, Tyren Barker, Shunsuke Minagawa, Jennifer Markovics, Amanda Goodsell, Jean Publicover, Louis Reichardt, David Jablons, Paul Wolters, Arthur Hill, James D. Marks, Jianlong Lou, Jean-Francois Pittet, Jack Gauldie, Jody Lynn Baron, Stephen L. Nishimura

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 965 140
PDF 106 46
Figure 469 9
Supplemental data 65 9
Citation downloads 64 0
Totals 1,669 204
Total Views 1,873
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts