Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8–mediated activation of TGF-β
Hideya Kitamura, Stephanie Cambier, Sangeeta Somanath, Tyren Barker, Shunsuke Minagawa, Jennifer Markovics, Amanda Goodsell, Jean Publicover, Louis Reichardt, David Jablons, Paul Wolters, Arthur Hill, James D. Marks, Jianlong Lou, Jean-Francois Pittet, Jack Gauldie, Jody Lynn Baron, Stephen L. Nishimura
Hideya Kitamura, Stephanie Cambier, Sangeeta Somanath, Tyren Barker, Shunsuke Minagawa, Jennifer Markovics, Amanda Goodsell, Jean Publicover, Louis Reichardt, David Jablons, Paul Wolters, Arthur Hill, James D. Marks, Jianlong Lou, Jean-Francois Pittet, Jack Gauldie, Jody Lynn Baron, Stephen L. Nishimura
View: Text | PDF
Research Article Pulmonology

Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8–mediated activation of TGF-β

  • Text
  • PDF
Abstract

The airway is a primary portal of entry for noxious environmental stimuli that can trigger airway remodeling, which contributes significantly to airway obstruction in chronic obstructive pulmonary disease (COPD) and chronic asthma. Important pathologic components of airway remodeling include fibrosis and abnormal innate and adaptive immune responses. The positioning of fibroblasts in interstitial spaces suggests that they could participate in both fibrosis and chemokine regulation of the trafficking of immune cells such as dendritic cells, which are crucial antigen-presenting cells. However, physiological evidence for this dual role for fibroblasts is lacking. Here, in two physiologically relevant models — conditional deletion in mouse fibroblasts of the TGF-β–activating integrin αvβ8 and neutralization of αvβ8 in human COPD fibroblasts — we have elucidated a mechanism whereby lung fibroblast chemokine secretion directs dendritic cell trafficking, in a manner that is critically dependent on αvβ8-mediated activation of TGF-β by fibroblasts. Our data therefore indicate that fibroblasts have a crucial role in regulating both fibrotic and immune responses in the lung.

Authors

Hideya Kitamura, Stephanie Cambier, Sangeeta Somanath, Tyren Barker, Shunsuke Minagawa, Jennifer Markovics, Amanda Goodsell, Jean Publicover, Louis Reichardt, David Jablons, Paul Wolters, Arthur Hill, James D. Marks, Jianlong Lou, Jean-Francois Pittet, Jack Gauldie, Jody Lynn Baron, Stephen L. Nishimura

×

Figure 9

Model for fibroblast αvβ8–directed DC migration in airway remodeling.

Options: View larger image (or click on image) Download as PowerPoint
Model for fibroblast αvβ8–directed DC migration in airway remodeling.
(i...
(i) Injury (i.e., tobacco smoke) or antigen (Ag) leads to inflammasome activation and caspase-1–mediated cleavage and release of active IL-1β. (ii) IL-1β is released by epithelial cells or macrophages. (iii) IL-1β increases αvβ8 expression by fibroblasts, which leads to increased conversion of latent to active TGF-β. (iv) Active TGF-β binds to fibroblast TGF-β receptors, leading to increased TGF-β–dependent chemokine (CCL2, CCL20) secretion and increased recruitment of DCs from the peripheral circulation. (v) Immature DCs encounter Ag within the epithelium or lamina propria and migrate toward fibroblasts via αvβ8-dependent chemotactic gradients. (vi) Mature DCs gain access to draining lymphatics. (vii) Mature DCs enter the draining MLN, where they prime adaptive immune responses. (viii) Differentiated memory/effector lymphocytes migrate to the airway to establish pathologic inflammation.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts