Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editor's notes
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice
Long Wang, … , Tyler J. Curiel, Bin Zhang
Long Wang, … , Tyler J. Curiel, Bin Zhang
Published May 2, 2011
Citation Information: J Clin Invest. 2011;121(6):2371-2382. https://doi.org/10.1172/JCI45559.
View: Text | PDF
Research Article Oncology

CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice

  • Text
  • PDF
Abstract

CD73 is overexpressed in many types of human and mouse cancers and is implicated in the control of tumor progression. However, the specific contribution from tumor or host CD73 expression to tumor growth remains unknown to date. Here, we show that host CD73 promotes tumor growth in a T cell–dependent manner and that the optimal antitumor effect of CD73 blockade requires inhibiting both tumor and host CD73. Notably, enzymatic activity of CD73 on nonhematopoietic cells limited tumor-infiltrating T cells by controlling antitumor T cell homing to tumors in multiple mouse tumor models. In contrast, CD73 on hematopoietic cells (including CD4+CD25+ Tregs) inhibited systemic antitumor T cell expansion and effector functions. Thus, CD73 on hematopoietic and nonhematopoietic cells has distinct adenosinergic effects in regulating systemic and local antitumor T cell responses. Importantly, pharmacological blockade of CD73 using its selective inhibitor or an anti-CD73 mAb inhibited tumor growth and completely restored efficacy of adoptive T cell therapy in mice. These findings suggest that both tumor and host CD73 cooperatively protect tumors from incoming antitumor T cells and show the potential of targeting CD73 as a cancer immunotherapy strategy.

Authors

Long Wang, Jie Fan, Linda F. Thompson, Yi Zhang, Tahiro Shin, Tyler J. Curiel, Bin Zhang

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 1,531 122
PDF 189 55
Figure 417 17
Supplemental data 40 2
Citation downloads 55 0
Totals 2,232 196
Total Views 2,428
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts