Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
Bin Zhou, … , Francis X. McGowan, William T. Pu
Bin Zhou, … , Francis X. McGowan, William T. Pu
Published April 18, 2011
Citation Information: J Clin Invest. 2011;121(5):1894-1904. https://doi.org/10.1172/JCI45529.
View: Text | PDF
Research Article Cardiology

Adult mouse epicardium modulates myocardial injury by secreting paracrine factors

  • Text
  • PDF
Abstract

The epicardium makes essential cellular and paracrine contributions to the growth of the fetal myocardium and the formation of the coronary vasculature. However, whether the epicardium has similar roles postnatally in the normal and injured heart remains enigmatic. Here, we have investigated this question using genetic fate-mapping approaches in mice. In uninjured postnatal heart, epicardial cells were quiescent. Myocardial infarction increased epicardial cell proliferation and stimulated formation of epicardium-derived cells (EPDCs), which remained in a thickened layer on the surface of the heart. EPDCs did not adopt cardiomyocyte or coronary EC fates, but rather differentiated into mesenchymal cells expressing fibroblast and smooth muscle cell markers. In vitro and in vivo assays demonstrated that EPDCs secreted paracrine factors that strongly promoted angiogenesis. In a myocardial infarction model, EPDC-conditioned medium reduced infarct size and improved heart function. Our findings indicate that epicardium modulates the cardiac injury response by conditioning the subepicardial environment, potentially offering a new therapeutic strategy for cardiac protection.

Authors

Bin Zhou, Leah B. Honor, Huamei He, Qing Ma, Jin-Hee Oh, Catherine Butterfield, Ruei-Zeng Lin, Juan M. Melero-Martin, Elena Dolmatova, Heather S. Duffy, Alexander von Gise, Pingzhu Zhou, Yong Wu Hu, Gang Wang, Bing Zhang, Lianchun Wang, Jennifer L. Hall, Marsha A. Moses, Francis X. McGowan, William T. Pu

×

Figure 2

Reactivation of the fetal epicardial program after MI.

Options: View larger image (or click on image) Download as PowerPoint
Reactivation of the fetal epicardial program after MI.
(A) qRT-PCR of he...
(A) qRT-PCR of heart RNA for epicardial genes after MI or sham operation, expressed relative to normal heart (no MI). (B) Immunohistochemistry of WT1 in heart 2 weeks after MI or sham operation. Epicardial thickening and WT1 upregulation were observed overlying infarct (regions 1 and 2), peri-infarct (region 3), and remote myocardium (region 4). Arrowheads indicate WT1 expression. (C) Expansion of the Wt1-expressing epicardial region at border zone and remote areas, confirmed by immunostaining for the CreERT2 epitope ESR1 in Wt1CreERT2/+ heart cryosections 2 weeks after MI. Arrowheads, ESR1+ cells in the epicardial region. (D) Quantitation of WT1+ epicardial cells after MI. Epicardium overlying remote (Rm) and infarct (MI) myocardium is shown. n = 3–6. (E) Number of GFP+ cells in adult labeled Wt1CreERT2/+;Rosa26mTmG/+ hearts after MI, as measured by FACS. (F) Proliferation of GFP-labeled EPDC after MI, detected by pH3 staining. (G and H) Epicardial proliferation increased, as assessed by pH3 staining, 3 days to 2 weeks after MI. Shown are (G) representative images and (H) quantification. (I) pH3 staining on canine myocardium. Canine epicardial cells increased proliferation between no MI and 5 days after MI. (J) Representative wedges of dog heart showing epicardium thickness 3 hours and 2 weeks after MI. Black line, outer layer of epicardium; green bar, epicardial thickness; dashed yellow and red lines, border between epicardium and myocardium. Scale bars: 100 μm; 1 mm (B, top left, and J); 10 μm (C, inset; F and G, right). n is shown for each group in A, E, and H. *P < 0.05 versus control.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts