Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
GLI3 repressor controls functional development of the mouse ureter
Jason E. Cain, … , Joshua Blake, Norman D. Rosenblum
Jason E. Cain, … , Joshua Blake, Norman D. Rosenblum
Published February 21, 2011
Citation Information: J Clin Invest. 2011;121(3):1199-1206. https://doi.org/10.1172/JCI45523.
View: Text | PDF
Research Article

GLI3 repressor controls functional development of the mouse ureter

  • Text
  • PDF
Abstract

Obstructive and nonobstructive forms of hydronephrosis (increased diameter of the renal pelvis and calyces) and hydroureter (dilatation of the ureter) are the most frequently detected antenatal abnormalities, yet the underlying molecular mechanisms are largely undefined. Hedgehog (Hh) proteins control tissue patterning and cell differentiation by promoting GLI-dependent transcriptional activation and by inhibiting the processing of GLI3 to a transcriptional repressor. Genetic mutations that generate a truncated GLI3 protein similar in size to the repressor in humans with Pallister-Hall syndrome (PHS; a disorder whose characteristics include renal abnormalities) and hydroureter implicate Hh-dependent signaling in ureter morphogenesis and function. Here, we determined that Hh signaling controls 2 cell populations required for the initiation and transmission of coordinated ureter contractions. Tissue-specific inactivation of the Hh cell surface effector Smoothened (Smo) in the renal pelvic and upper ureteric mesenchyme resulted in nonobstructive hydronephrosis and hydroureter characterized by ureter dyskinesia. Mutant mice had reduced expression of markers of cell populations implicated in the coordination of unidirectional ureter peristalsis (specifically, Kit and hyperpolarization-activation cation–3 channel [Hcn3]), but exhibited normal epithelial and smooth muscle cell differentiation. Kit deficiency in a mouse model of PHS suggested a pathogenic role for GLI3 repressor in Smo-deficient embryos; indeed, genetic inactivation of Gli3 in Smo-deficient mice rescued their hydronephrosis, hydroureter, Kit and Hcn3 expression, and ureter peristalsis. Together, these data demonstrate that Hh signaling controls Kit and Hcn3 expression and ureter peristalsis.

Authors

Jason E. Cain, Epshita Islam, Fiona Haxho, Joshua Blake, Norman D. Rosenblum

×

Figure 2

GLI3 repressor is deleterious to the functional development of the ureter.

Options: View larger image (or click on image) Download as PowerPoint
GLI3 repressor is deleterious to the functional development of the urete...
(A–T) E18.5 Gli2 homozygous mutants and Gli3 homozygous mutants exhibited normal kidney and ureter morphology (F, G, K, and L), normal ureter lumen diameter and dye clearance (H and M), and coordinated proximal-distal ureter contractions (I, J, N, and O; blue line [1], proximal ureter; red line [2], midproximal ureter; green line [3], mid-distal ureter; yellow line [4], distal ureter) compared with those of control littermates (A–E). The Gli3Δ699/Δ699 mouse model demonstrated severe nonobstructive hydroureter and hydronephrosis (P–R) and ureter dyskinesia (S and T). In E, J, O, and T, percent relaxation is plotted for the duration of a single peristaltic movement (x axis). (U–X) Smooth muscle differentiation and Kit-positive ICC-LCs (arrows) were comparable among control (U), Gli2zfd/zfd (V), and Gli3XtJ/XtJ (W) proximal ureters. In contrast, despite the presence of smooth muscle, Kit-positive ICC-LCs were undetectable in Gli3Δ699/Δ699 proximal ureters (X). Scale bars: 100 μm (D, I, N, S, and U–X), 500 μm (A–C, F–H, K–M, and P–R).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts