Acute kidney injury predisposes patients to the development of both chronic kidney disease and end-stage renal failure, but the molecular details underlying this important clinical association remain obscure. We report that kidney injury molecule-1 (KIM-1), an epithelial phosphatidylserine receptor expressed transiently after acute injury and chronically in fibrotic renal disease, promotes kidney fibrosis. Conditional expression of KIM-1 in renal epithelial cells (
Benjamin D. Humphreys, Fengfeng Xu, Venkata Sabbisetti, Ivica Grgic, Said Movahedi Naini, Ningning Wang, Guochun Chen, Sheng Xiao, Dhruti Patel, Joel M. Henderson, Takaharu Ichimura, Shan Mou, Savuth Soeung, Andrew P. McMahon, Vijay K. Kuchroo, Joseph V. Bonventre
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,117 | 220 |
202 | 73 | |
Figure | 458 | 12 |
Table | 243 | 0 |
Supplemental data | 32 | 6 |
Citation downloads | 71 | 0 |
Totals | 2,123 | 311 |
Total Views | 2,434 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.