Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Farnesoid X receptor represses hepatic human APOA gene expression
Indumathi Chennamsetty, … , Michael Trauner, Gert M. Kostner
Indumathi Chennamsetty, … , Michael Trauner, Gert M. Kostner
Published August 1, 2011
Citation Information: J Clin Invest. 2011;121(9):3724-3734. https://doi.org/10.1172/JCI45277.
View: Text | PDF
Research Article Genetics

Farnesoid X receptor represses hepatic human APOA gene expression

  • Text
  • PDF
Abstract

High plasma concentrations of lipoprotein(a) [Lp(a), which is encoded by the APOA gene] increase an individual’s risk of developing diseases, such as coronary artery diseases, restenosis, and stroke. Unfortunately, increased Lp(a) levels are minimally influenced by dietary changes or drug treatment. Further, the development of Lp(a)-specific medications has been hampered by limited knowledge of Lp(a) metabolism. In this study, we identified patients suffering from biliary obstructions with very low plasma Lp(a) concentrations that rise substantially after surgical intervention. Consistent with this, common bile duct ligation in mice transgenic for human APOA (tg-APOA mice) lowered plasma concentrations and hepatic expression of APOA. To test whether farnesoid X receptor (FXR), which is activated by bile acids, was responsible for the low plasma Lp(a) levels in cholestatic patients and mice, we treated tg-APOA and tg-APOA/Fxr–/– mice with cholic acid. FXR activation markedly reduced plasma concentrations and hepatic expression of human APOA in tg-APOA mice but not in tg-APOA/Fxr–/– mice. Incubation of primary hepatocytes from tg-APOA mice with bile acids dose dependently downregulated APOA expression. Further analysis determined that the direct repeat 1 element between nucleotides –826 and –814 of the APOA promoter functioned as a negative FXR response element. This motif is also bound by hepatocyte nuclear factor 4α (HNF4α), which promotes APOA transcription, and FXR was shown to compete with HNF4α for binding to this motif. These findings may have important implications in the development of Lp(a)-lowering medications.

Authors

Indumathi Chennamsetty, Thierry Claudel, Karam M. Kostner, Anna Baghdasaryan, Dagmar Kratky, Sanja Levak-Frank, Sasa Frank, Frank J. Gonzalez, Michael Trauner, Gert M. Kostner

×

Figure 6

FXR binds to the DR-1 element of the human APOA promoter as a monomer.

Options: View larger image (or click on image) Download as PowerPoint
FXR binds to the DR-1 element of the human APOA promoter as a monomer.
 ...
(A) EMSAs were performed with radiolabeled IR-1 consensus FXRE (lanes 1–4), DR-1 WT (lanes 5–8), and DR-1 M2 (lanes 9–12) probes using in vitro transcribed/translated RXR (lanes 2, 6, and 10), FXR (lanes 3, 7, and 11), both RXR and FXR (lanes 4, 8, and 12), or unprogrammed reticulocyte lysate (lanes 1, 5, and 9) as indicated. (B) Competition EMSAs on radiolabeled DR-1 WT probe were performed by adding 50-fold, 100-fold, 200-fold molar excess of the indicated cold DR-1 WT (lanes 3–5) and 50-fold molar excess of cold DR-1 M2 (lane 6) and IR-1 (lane 7) probes. Numbering indicates relative intensity of the bands.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts