Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production
Karen McLean, … , Kathleen R. Cho, Ronald J. Buckanovich
Karen McLean, … , Kathleen R. Cho, Ronald J. Buckanovich
Published July 1, 2011
Citation Information: J Clin Invest. 2011;121(8):3206-3219. https://doi.org/10.1172/JCI45273.
View: Text | PDF
Research Article Oncology

Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production

  • Text
  • PDF
Abstract

Accumulating evidence suggests that mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment; however, controversy exists regarding their role in solid tumors. In this study, we identified and confirmed the presence of carcinoma-associated MSCs (CA-MSCs) in the majority of human ovarian tumor samples that we analyzed. These CA-MSCs had a normal morphologic appearance, a normal karyotype, and were nontumorigenic. CA-MSCs were multipotent with capacity for differentiating into adipose, cartilage, and bone. When combined with tumor cells in vivo, CA-MSCs promoted tumor growth more effectively than did control MSCs. In vitro and in vivo studies suggested that CA-MSCs promoted tumor growth by increasing the number of cancer stem cells. Although CA-MSCs expressed traditional MSCs markers, they had an expression profile distinct from that of MSCs from healthy individuals, including increased expression of BMP2, BMP4, and BMP6. Importantly, BMP2 treatment in vitro mimicked the effects of CA-MSCs on cancer stem cells, while inhibiting BMP signaling in vitro and in vivo partly abrogated MSC-promoted tumor growth. Taken together, our data suggest that MSCs in the ovarian tumor microenvironment have an expression profile that promotes tumorigenesis and that BMP inhibition may be an effective therapeutic approach for ovarian cancer.

Authors

Karen McLean, Yusong Gong, Yunjung Choi, Ning Deng, Kun Yang, Shoumei Bai, Lourdes Cabrera, Evan Keller, Laurie McCauley, Kathleen R. Cho, Ronald J. Buckanovich

×

Figure 3

CA-MSCs promote ovarian tumorigenesis more than control MSCs.

Options: View larger image (or click on image) Download as PowerPoint
CA-MSCs promote ovarian tumorigenesis more than control MSCs.
(A) Tumor ...
(A) Tumor weights of SKOV3 tumors grown alone or with the indicated MSCs (SKOV3 plus control MSCs, n = 10; SKOV3 plus CA-MSCs, n = 20; pooled results, n = 5 for 4 CA-MSC cell lines). Results are representative of 2 independent experiments. (B and C) Bioluminescent-based tumor growth curve of SKOV3-luciferase tumors alone or in combination with the indicated MSCs (control MSCs, n = 10 and Pt 134 MSCs, n = 8, in 2 independent experiments). Signal intensity mapping for tumors is shown (p/s/cm2). (D) Ki67 immunohistochemistry and quantification from SKOV3+adipose MSC and SKOV3+CA-MSC tumors. Original magnification, ×100. Cont, control. (E) Hematoxylin and eosin stains of paraffin-embedded tumor specimens grown with MSCs or CA-MSCs, demonstrating tumor adipocytes (top right and bottom left). Tumors with CA-MSCs demonstrated areas of early bone formation (bottom right). Original magnification, ×40. All results represent means with standard deviations. *P < 0.01; **P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts