Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts
Xiaohua Ni, … , Theodore L. DeWeese, Shawn E. Lupold
Xiaohua Ni, … , Theodore L. DeWeese, Shawn E. Lupold
Published May 9, 2011
Citation Information: J Clin Invest. 2011;121(6):2383-2390. https://doi.org/10.1172/JCI45109.
View: Text | PDF
Research Article Oncology

Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts

  • Text
  • PDF
Abstract

Dose-escalated radiation therapy for localized prostate cancer (PCa) has a clear therapeutic benefit; however, escalated doses may also increase injury to noncancerous tissues. Radiosensitizing agents can improve ionizing radiation (IR) potency, but without targeted delivery, these agents will also sensitize surrounding normal tissues. Here we describe the development of prostate-targeted RNAi agents that selectively sensitized prostate-specific membrane antigen–positive (PSMA-positive) cells to IR. siRNA library screens identified DNA-activated protein kinase, catalytic polypeptide (DNAPK) as an ideal radiosensitization target. DNAPK shRNAs, delivered by PSMA-targeting RNA aptamers, selectively reduced DNAPK in PCa cells, xenografts, and human prostate tissues. Aptamer-targeted DNAPK shRNAs, combined with IR, dramatically and specifically enhanced PSMA-positive tumor response to IR. These findings support aptamer-shRNA chimeras as selective sensitizing agents for the improved treatment of high-risk localized PCa.

Authors

Xiaohua Ni, Yonggang Zhang, Judit Ribas, Wasim H. Chowdhury, Mark Castanares, Zhewei Zhang, Marikki Laiho, Theodore L. DeWeese, Shawn E. Lupold

×

Figure 5

Radiosensitization in PCa cell and tumor models.

Options: View larger image (or click on image) Download as PowerPoint
Radiosensitization in PCa cell and tumor models.
(A) In vitro radiosensi...
(A) In vitro radiosensitization. LNCaP cells treated with 400 nM A10-3–DNAPK or A10-3–Con or transfected with control siRNA were irradiated 48 hours later with 6 Gy IR, and cell viability was assessed 12 days later by MTS. Percent cell death is relative to nonirradiated cells. (B–D) In vivo radiosensitization. Established tumors were treated with aptamer-shRNA chimeras (days –3 and –2) and either 6 Gy IR or no radiation (day 0). (B) PC3 tumor model (n = 3 per group). A10-3–DNAPK provided no significant therapeutic benefit to nonirradiated or irradiated PC3 tumors. Radiation similarly affected growth in all treatment groups. Mean ± SEM. (C) LNCaP tumor model (n ≥ 6 per group). Radiation similarly affected growth in all treatment groups except irradiated A10-3–DNAPK. *P < 0.05, ***P < 0.001, A10-3–DNAPK IR vs. A10-3–Con IR and A10-3–DNAPK IR vs. Neg-DNAPK IR; 2-way ANOVA. Mean ± SEM. (D) Extension of tumor quadrupling for LNCaP tumor model. Events (animals whose tumor volume was not yet 4-fold the size at injection) were plotted by Kaplan-Meier curve. P < 0.01, A10-3–Con IR vs. A10-3–Con and Neg-DNAPK IR vs. Neg-DNAPK; P < 0.0001, A10-3–DNAPK IR vs. A10-3–Con IR and A10-3–DNAPK IR vs. Neg-DNAPK IR; log-rank (Mantel-Cox) test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts