Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts
Xiaohua Ni, … , Theodore L. DeWeese, Shawn E. Lupold
Xiaohua Ni, … , Theodore L. DeWeese, Shawn E. Lupold
Published May 9, 2011
Citation Information: J Clin Invest. 2011;121(6):2383-2390. https://doi.org/10.1172/JCI45109.
View: Text | PDF
Research Article Oncology

Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts

  • Text
  • PDF
Abstract

Dose-escalated radiation therapy for localized prostate cancer (PCa) has a clear therapeutic benefit; however, escalated doses may also increase injury to noncancerous tissues. Radiosensitizing agents can improve ionizing radiation (IR) potency, but without targeted delivery, these agents will also sensitize surrounding normal tissues. Here we describe the development of prostate-targeted RNAi agents that selectively sensitized prostate-specific membrane antigen–positive (PSMA-positive) cells to IR. siRNA library screens identified DNA-activated protein kinase, catalytic polypeptide (DNAPK) as an ideal radiosensitization target. DNAPK shRNAs, delivered by PSMA-targeting RNA aptamers, selectively reduced DNAPK in PCa cells, xenografts, and human prostate tissues. Aptamer-targeted DNAPK shRNAs, combined with IR, dramatically and specifically enhanced PSMA-positive tumor response to IR. These findings support aptamer-shRNA chimeras as selective sensitizing agents for the improved treatment of high-risk localized PCa.

Authors

Xiaohua Ni, Yonggang Zhang, Judit Ribas, Wasim H. Chowdhury, Mark Castanares, Zhewei Zhang, Marikki Laiho, Theodore L. DeWeese, Shawn E. Lupold

×

Figure 4

PSMA selectivity and aptamer-shRNA chimera processing.

Options: View larger image (or click on image) Download as PowerPoint
PSMA selectivity and aptamer-shRNA chimera processing.
(A and B) PSMA se...
(A and B) PSMA selectivity. (A) PC3-PIP or (B) PC3-Flu cells were treated with 400 nM aptamer-shRNA chimeras for 48 hours, and DNAPK expression was quantified by qRT-PCR. siRNA DNAPK (100 nM transfected) was included as a positive control. Expression is normalized to GAPDH. Mean ± SEM (n = 3). *P < 0.05. (C) Aptamer-shRNA chimera processing by Dicer in vitro. Cleavage products were analyzed by denaturing PAGE and ethidium bromide staining. Image is inverted for clarity. (D) Cell-based RNAi processing assay. LNCaP cells were treated with 400 nM aptamer-shRNA chimeras, and RNA was extracted 48 hours later for Northern blot assay. Probes are specific to corresponding antisense siRNAs. ds, double-stranded; ss, single-stranded. (E and F) Targeted in vivo knockdown. Subcutaneous LNCaP tumors were injected with aptamer-shRNA chimeras (200 pmol/injection) on days –3 and –2 and harvested on day 0, and DNAPK expression was determined. (E) qRT-PCR. Mean ± SEM. *P < 0.05. (F) Immunohistochemistry. Original magnification, ×400. (G and H) 5′-RACE PCR analysis to assess siRNA-mediated cleavage of DNAPK. (G) LNCaP cells transfected with DNAPK siRNA or with A10-3–DNAPK chimeras produced a specific DNAPK cleavage product. (H) In vivo treatment of LNCaP xenografts with A10-3–DNAPK chimera resulted in siRNA-mediated DNAPK cleavage.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts