Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons
Jose Donato Jr., … , Joel K. Elmquist, Carol F. Elias
Jose Donato Jr., … , Joel K. Elmquist, Carol F. Elias
Published December 22, 2010
Citation Information: J Clin Invest. 2011;121(1):355-368. https://doi.org/10.1172/JCI45106.
View: Text | PDF
Research Article

Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons

  • Text
  • PDF
Abstract

Studies in humans and rodents indicate that a minimum amount of stored energy is required for normal pubertal development. The adipocyte-derived hormone leptin is a key metabolic signal to the neuroendocrine reproductive axis. Humans and mice lacking leptin or the leptin receptor (LepR) (ob/ob and db/db mice, respectively) are infertile and fail to enter puberty. Leptin administration to leptin-deficient subjects and ob/ob mice induces puberty and restores fertility, but the exact site or sites of leptin action are unclear. Here, we found that genetic deletion of LepR selectively from hypothalamic Kiss1 neurons in mice had no effect on puberty or fertility, indicating that direct leptin signaling in Kiss1 neurons is not required for these processes. However, bilateral lesions of the ventral premammillary nucleus (PMV) of ob/ob mice blunted the ability of exogenous leptin to induce sexual maturation. Moreover, unilateral reexpression of endogenous LepR in PMV neurons was sufficient to induce puberty and improve fertility in female LepR-null mice. This LepR reexpression also normalized the increased hypothalamic GnRH content characteristic of leptin-signaling deficiency. These data suggest that the PMV is a key site for leptin’s permissive action at the onset of puberty and support the hypothesis that the multiple actions of leptin to control metabolism and reproduction are anatomically dissociated.

Authors

Jose Donato Jr., Roberta M. Cravo, Renata Frazão, Laurent Gautron, Michael M. Scott, Jennifer Lachey, Inar A. Castro, Lisandra O. Margatho, Syann Lee, Charlotte Lee, James A. Richardson, Jeffrey Friedman, Streamson Chua Jr., Roberto Coppari, Jeffrey M. Zigman, Joel K. Elmquist, Carol F. Elias

×

Figure 2

Bilateral lesions of the PMV did not affect leptin’s effect to restore metabolic parameters in female ob/ob mice.

Options: View larger image (or click on image) Download as PowerPoint
Bilateral lesions of the PMV did not affect leptin’s effect to restore m...
(A and B) Distribution of pSTAT3 immunoreactivity (pSTAT3-ir) in the PMV and Arc of 1 control PMV-nonlesion mouse (A) and 1 mouse classified as PMV-lesion (B). (C) Quantification of Kiss1 mRNA/cell of PMV-lesion and PMV-nonlesion mice. (D and E) distribution of Kiss1 mRNA in the Arc of 1 control PMV-nonlesion mouse (D) and of 1 mouse classified as PMV-lesion (E, same case shown in B). Kiss1 expression was used to assess the extent of lesions of Arc and/or Kiss1 neurons. pSTAT3-ir and Kiss1 mRNA are intact in the Arc of PMV-lesion group. (F–H) PMV-lesion mice showed similar body weight (F), food intake (G) and body composition (H) compared with control PMV-nonlesion mice before and after leptin treatment. Leptin treatment reduced food intake, body weight, and the percentage of fat mass in both groups. *Statistically different from control PMV-nonlesion ob/ob mice. 3v, third ventricle. Data are expressed as mean ± SEM. Scale bars: 400 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts