Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Pharmacologic eigenvalues: beating the rap on bone marrow failure
Stephen G. Emerson, Russell W. Garrett
Stephen G. Emerson, Russell W. Garrett
Published October 25, 2010
Citation Information: J Clin Invest. 2010;120(11):3813-3815. https://doi.org/10.1172/JCI45060.
View: Text | PDF
Commentary

Pharmacologic eigenvalues: beating the rap on bone marrow failure

  • Text
  • PDF
Abstract

Patients suffering from sustained acute or chronic illness often have decreased white blood cell and platelet counts as well as anemia, and bone marrow studies routinely show only decreased numbers of blood precursor cells. While much has been recently learned about the cause of isolated anemia, the pathogenesis of true bone marrow failure (i.e., low bone marrow cellularity and low counts in multiple blood lineages) has remained elusive. In this issue of the JCI, Chen et al. present evidence that overactivation of mammalian target of rapamycin signaling in HSCs is found in two mouse models of bone marrow failure, and they show that treatment with rapamycin significantly normalizes the low blood counts.

Authors

Stephen G. Emerson, Russell W. Garrett

×

Full Text PDF | Download (191.85 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts