Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Living or dying by RNA processing: caspase expression in NSCLC
Ganesh Shankarling, Kristen W. Lynch
Ganesh Shankarling, Kristen W. Lynch
Published October 25, 2010
Citation Information: J Clin Invest. 2010;120(11):3798-3801. https://doi.org/10.1172/JCI45037.
View: Text | PDF
Commentary

Living or dying by RNA processing: caspase expression in NSCLC

  • Text
  • PDF
Abstract

Protein expression in humans is controlled by numerous RNA processing steps that occur between transcription of a gene and translation of protein. However, the importance of such regulatory steps to human diseases, especially cancer, is just now coming to light. Changes in the alternative splicing or stability of mRNA transcribed from genes involved in cell-cycle control, cell proliferation, and apoptosis has been linked to tumor formation and progression. Nevertheless, in the majority of these cases, the identity of the regulators that control the expression of such cancer-related genes is poorly understood. In this issue of the JCI, Goehe et al. demonstrate that heterogeneous nuclear ribonuclear protein family member L (hnRNP L), a member of the hnRNP family of RNA processing factors, is specifically phosphorylated in non–small cell lung cancer (NSCLC). The phosphorylated hnRNP L, in turn, promotes expression of the antiapoptotic form of caspase-9, thereby contributing to tumorigenesis.

Authors

Ganesh Shankarling, Kristen W. Lynch

×

Full Text PDF | Download (967.82 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts