Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation
Xue Wu, … , Benjamin G. Neel, Toshiyuki Araki
Xue Wu, … , Benjamin G. Neel, Toshiyuki Araki
Published February 21, 2011
Citation Information: J Clin Invest. 2011;121(3):1009-1025. https://doi.org/10.1172/JCI44929.
View: Text | PDF
Research Article

MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation

  • Text
  • PDF
Abstract

Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden death in children and young adults. Abnormalities in several signaling pathways are implicated in the pathogenesis of HCM, but the role of the RAS-RAF-MEK-ERK MAPK pathway has been controversial. Noonan syndrome (NS) is one of several autosomal-dominant conditions known as RASopathies, which are caused by mutations in different components of this pathway. Germline mutations in RAF1 (which encodes the serine-threonine kinase RAF1) account for approximately 3%–5% of cases of NS. Unlike other NS alleles, RAF1 mutations that confer increased kinase activity are highly associated with HCM. To explore the pathogenesis of such mutations, we generated knockin mice expressing the NS-associated Raf1L613V mutation. Like NS patients, mice heterozygous for this mutation (referred to herein as L613V/+ mice) had short stature, craniofacial dysmorphia, and hematologic abnormalities. Valvuloseptal development was normal, but L613V/+ mice exhibited eccentric cardiac hypertrophy and aberrant cardiac fetal gene expression, and decompensated following pressure overload. Agonist-evoked MEK-ERK activation was enhanced in multiple cell types, and postnatal MEK inhibition normalized the growth, facial, and cardiac defects in L613V/+ mice. These data show that different NS genes have intrinsically distinct pathological effects, demonstrate that enhanced MEK-ERK activity is critical for causing HCM and other RAF1-mutant NS phenotypes, and suggest a mutation-specific approach to the treatment of RASopathies.

Authors

Xue Wu, Jeremy Simpson, Jenny H. Hong, Kyoung-Han Kim, Nirusha K. Thavarajah, Peter H. Backx, Benjamin G. Neel, Toshiyuki Araki

×

Figure 10

MEK inhibitor treatment normalizes cardiac function in L613V/+ mice.

Options: View larger image (or click on image) Download as PowerPoint
MEK inhibitor treatment normalizes cardiac function in L613V/+ mice.
(A)...
(A) Echocardiographic parameters of hearts after treatment with PD0325901 as described in Figure 9. Note normalization of SV and FS, with a trend toward CO normalization. *P < 0.05, **P < 0.005, ***P < 0.0001, Bonferroni post-test when ANOVA was significant; #P < 0.05, 1-tailed Student’s t test. (B) Hemodynamic parameters, assessed by cardiac catheterization, after PD0325901 treatment. For calculating statistical significance, significant outliers (circled data points), as assessed by Grubbs test, were removed. *P < 0.05, Bonferroni post-test when ANOVA was significant (P = 0.09 including outliers); #P < 0.05, 1-tailed Student’s t test (P = 0.12 including outliers). n = 14 (WT); 10 (L613V/+); 6 (WT PD); 14 (L613V/+ PD).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts